

Unusual Sources of Baryon Number Violation

Mark Wise Caltech
Preskill 60'th, March 16 2013

The Good

6. Cosmology of the Invisible Axion

John Preskill, Mark B. Wise (Harvard U.), Frank Wilczek (Santa Barbara, KITP). Sep 1982. 14 pp. Published in Phys.Lett. B120 (1983) 127-132

The Bad

3. Wormholes In Space-time And Theta (qcd)

John Preskill, Sandip P. Trivedi, Mark B. Wise (Caltech). Mar 3, 1989. 13 pp. Published in Phys.Lett. B223 (1989) 26

The Ugly

5. Neutrino Masses And Family Symmetry

Benjamin Grinstein, John Preskill, Mark B. Wise (Caltech). May 1985. 13 pp. Published in Phys.Lett. B159 (1985) 57 CALT-68-1266

This Talk

. Simplified models with baryon number violation but no proton decay

Jonathan M. Arnold, Bartosz Fornal, Mark B. Wise. Dec 2012. 7 pp.

CALT-68-2898

e-Print: arXiv:1212.4556 [hep-ph] | PDF

Introduction

Standard Model (SM) has automatic symmetry B-L of renormalizable lagrangian. B is also an automatic symmetry classically. But its anomalous. Not important at T=0 but important at High T.

$$B = \frac{28}{79}(B - L)$$

B violated at dimension 6. eg. $\frac{u_R u_R d_R e_R}{\Lambda^2}$

Mean lifetime for mode $p \rightarrow e^+\pi^0$ greater than

$$8.2 \times 10^{33} \text{ years}$$

Scale greater than about $10^{16} {\rm GeV}$

Simplest Models With Baryon number violation but no proton decay: Method

- Proton decay violates baryon number by one unit and lepton number by and odd number of units.
- Interaction violates baryon number by one unit but conserves lepton number or violates or violates baryon number by two units then no proton decay, for example.
- Can happen in supersymmetric models since there is a renormalizable operator that violates baryon number but not lepton number.
- But still could get baryon number violating process like: $n-\bar{n}$ oscillations or $p+p\to K^+K^+$

• Simplest (least number of fields) have two new fields $X_{1,2}$ that couple to bilinears of quark/lepton fields:

operator	$SU(3) \times SU(2) \times U(1)$ rep. of X	B	L
XQQ, Xud	$(\bar{6},1,-1/3),(3,1,-1/3)_{\mathrm{PD}}$	-2/3	0
XQQ	$(\bar{6}, 3, -1/3), (3, 3, -1/3)_{PD}$	-2/3	0
Xdd	$(3,1,2/3), (\bar{6},1,2/3)$	-2/3	0
Xuu	$(\bar{6}, 1, -4/3), (3, 1, -4/3)_{PD}$	-2/3	0
$Xar{Q}ar{L}$	$(3,1,-1/3)_{PD},(3,3,-1/3)_{PD}$	1/3	1
$X \bar{u} \bar{e}$	$(3,1,-1/3)_{ m PD}$	1/3	1
$Xar{d}ar{e}$	$(3,1,-4/3)_{ m PD}$	1/3	1
$Xar{Q}e, XLar{u}$	(3, 2, 7/6)	1/3	-1
$Xar{L}d$	$(\bar{3},2,-1/6)_{ m PD}$	-1/3	1
XLL	(1,1,1),(1,3,1)	0	-2
Xee	(1, 1, 2)	0	-2

- Quantum numbers
 (SU(3),SU(2), U(1)) that
 tree level nucleon decay
 eliminates: (3,1,-1/3),
 (3,3,-1/3),(3,1,-4/3).
- Actually (3,1,-4/3)
 needs extra W boson
 because of
 antisymmetry

Eliminate representation $(\bar{3},2,-1/6)$ Gives the decay $p\to\pi^+\pi^+e\nu\nu$

Write most general interactions consistent with The gauge symmetries. Violate baryon number from

The 9 Models

- Model 1: $X_1 = (\overline{6}, 1, -1/3), X_2 = (\overline{6}, 1, 2/3)$
- Model 2: $X_1 = (\overline{6}, 3, -1/3), X_2 = (\overline{6}, 1, 2/3)$
- Model 3: $X_1 = (\overline{6}, 1, 2/3), X_2 = (\overline{6}, 1, -4/3)$
- Model 4: $X_1 = (3, 1, 2/3), X_2 = (\overline{6}, 1, -4/3)$
- Model 5: $X_1 = (\overline{6}, 1, -1/3), X_2 = (1, 1, 1)$
- Etc.

List not that informative. Lets look briefly Into phenomelology of model 1

Model 1

Fields:
$$X_1 = (\overline{6}, 1, -1/3), X_2 = (\overline{6}, 1, 2/3)$$

Lagrangian:

$$\mathcal{L} = -g_1^{ab} X_1^{\alpha\beta} \left(Q_{L\alpha}^a \epsilon Q_{L\beta}^b \right) - g_2^{ab} X_2^{\alpha\beta} (d_{R\alpha}^a d_{R\beta}^b)$$

$$-g_1^{\prime ab} X_1^{\alpha\beta} (u_{R\alpha}^a d_{R\beta}^b) + \lambda X_1^{\alpha\alpha'} X_1^{\beta\beta'} X_2^{\gamma\gamma'} \epsilon_{\alpha\beta\gamma} \epsilon_{\alpha'\beta'\gamma'}$$

$$\tag{1}$$

Coupling λ has dimensions of mass. Baryon number violation because of λ Coupling g_1 is antisymmetric on flavor indices, g_1' and g_2 are symmetric on flavor indices

Neutron Anti-Neutron Oscillations

Neutron anti-neutron oscillation time $\tau_{n\bar{n}}=1/\Delta m$

$$\Delta m = \langle \bar{n} | \mathcal{H}_{eff} | n \rangle \qquad P_{n \to \bar{n}} = \sin^2(t/\tau_{n\bar{n}})$$

Experiment SuperK limit, $\Delta m < 2 \times 10^{-33} {\rm GeV}$

$$d \qquad \mathcal{H}_{\text{eff}} = -\frac{(g_1^{\prime 11})^2 g_2^{11} \lambda}{4M_1^4 M_2^2} d_{Ri}^{\dot{\alpha}} d_{Ri^{\prime}}^{\dot{\beta}} u_{Rj}^{\dot{\gamma}} d_{Rj^{\prime}}^{\dot{\delta}} u_{Rk}^{\dot{\gamma}} d_{Rk^{\prime}}^{\dot{\gamma}} \epsilon_{\dot{\alpha}\dot{\beta}} \epsilon_{\dot{\gamma}\dot{\delta}} \epsilon_{\dot{\lambda}\dot{\chi}} \\ \times \left(\epsilon_{ijk} \epsilon_{i^{\prime}j^{\prime}k^{\prime}} + \epsilon_{i^{\prime}jk} \epsilon_{ij^{\prime}k^{\prime}} + \epsilon_{ij^{\prime}k} \epsilon_{i^{\prime}jk^{\prime}} + \epsilon_{ijk^{\prime}} \epsilon_{i^{\prime}j^{\prime}k} \right) + \text{h.c.} \\ u \qquad \qquad \downarrow X_2 \qquad \qquad u \\ d \qquad \qquad d \qquad d \qquad d$$

Calculate matrix element using vacuum insertion approximation. One matrix element needed between neutron three quark fields and vacuum.

Expressed in terms of one dimensionful parameter β that has been measured using lattice QCD $\beta \simeq 0.01 GeV^3$

$$|\Delta m| = 2\lambda \beta^2 \frac{|(g_1^{\prime 11})^2 g_2^{11}|}{3M_1^4 M_2^2}$$

All dimensionful parameters equal to M Yukawa coupling constants equal to unity then $M>500{\rm TeV}$

Another extreme $M_1=5{\rm TeV}$ above LHC limits. Then with $\lambda=M_2$ find $M_2>5\times 10^{13}{\rm GeV}$

Flavor Physics

 Get a contribution to quark electric dipole moments not suppressed by quark mass

$$|d_d| \simeq \frac{m_t}{6\pi^2 M_1^2} \log\left(\frac{M_1^2}{m_t^2}\right) \left| \text{Im}[g_1^{31}(g_1^{'31})^*] \right| e \text{cm}$$

• Experiment: $d_n^{\rm exp} < 2.9 \times 10^{-26} e{
m cm}$

$$M_1 = 500 \text{TeV}$$
 then $\left| \text{Im}[g_1^{31} (g_1^{\prime 31})^*] \right| \lesssim 6 \times 10^{-3}$

•Another strong constraint from K-K mixing that arises at tree level from the exchange of X_2

$$\mathcal{H}_{\text{eff}} = \frac{g_2^{22} (g_2^{11})^*}{M_2^2} (s_{R\alpha} s_{R\beta}) (d_R^{*\alpha} s_R^{*\beta})$$

$$\rightarrow \frac{g_2^{22} (g_2^{11})^*}{2M_2^2} (\bar{d}_R^{\alpha} \gamma^{\mu} s_{R\alpha}) (\bar{d}_R^{\alpha} \gamma_{\mu} s_{R\alpha}),$$

Implies that:

$$\left| \text{Re} \left[g_2^{22} \left(g_2^{11} \right)^* \right] \right| < 1.8 \times 10^{-6} \left(\frac{M_2}{1 \text{ TeV}} \right)^2,$$

$$\left| \text{Im} \left[g_2^{22} \left(g_2^{11} \right)^* \right] \right| < 6.8 \times 10^{-9} \left(\frac{M_2}{1 \text{ TeV}} \right)^2.$$

Generating a Baryon Asymmetry

• Use same method introduced for grand unified theories. Net baryon number per $X_2 \bar{X}_2$

pair is $2(r-\bar{r})$

Decay	Br	B_f	
$X_2 \to \overline{X}_1 \overline{X}_1$	r	4/3	
$X_2 \to \bar{d}_R \bar{d}_R$	1-r	-2/3	
$\overline{X}_2 \to X_1 X_1$	$ar{r}$	-4/3	
$\overline{X}_2 \to d_R d_R$	$1-\bar{r}$	2/3	