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Time travel in fiction    

Examples: 
 

- The Iliad (prophesy by Cassandra) (¼700BC) 
 

- The time machine (Wells 1895) 
 

- Back to Future (1985-90) 
 

- Groundhog day (1993) 
 

- Futurama (2001) 
 

- Interstellar (by Nolan / Kip Thorne!) (Nov 2014)  

Universal desire to remedy  
past mistakes, to peer into the  
future, or even to improve it 

Deviation from causality, inconsistencies (like the grandfather  
paradox) and their resolutions are often the full features ...   



Time travel in physics 

Feb 1993 

A source of deep fundamental questions ... 

Not ruled out by GR,  
chronology protection? 



Time travel in information science 

Given CTCs:  
 - can one solve hard problems faster?  
 - can one solve impossible problems?  
 
Can one prove results concerning computation without CTCs ?    

Not so interesting:  
 Hide the complexity of the problem inside the CTC 
 
e.g., compute slowly and send the answer back in time 
 
 since complexity theory 
seeks to understand how 
difficult each problem is 
and how useful each  
primitive operation is ... 

The computation models using CTCs 
have been carefully defined so that  
hardness can be quantified properly.  



Outline 

1. Deutsch CTCs  
 

    - Method to discriminate non-orthogonal states ? 
 

    - Algorithms for solving NP or PSPACE problems ? 
 

    - Nonlinearity trap 

2. Postselected CTCs  
 

    - Method to discriminate non-orthogonal states 
 

    - Algorithms for solving PP problems 
 

    - Environmental concerns 
 

    - Fault-tolerance ?  
 Focus on 2 tasks: first is an info theoretic  

problem on state discriminate ...  second  
on efficient computation of hard problems. 
Second problem often built on the first ... 



Deutsch CTCs 

U 

Chronology 
respecting  
(CR) registers 

CTC registers 

(a) The CTC occupies a 
compact region of 
spacetime (evolved  
from initial conditions).  
(b) Two types of qubits – 
those traversing CTCs and 
those that do not.   
(c) The CR registers and  
the CTC registers can 
interact unitarily.   
(d) Measurements and  
preparation of the CTC 
registers are not allowed.  
(e) CTC qubits are not 
reusable.   

The grandfather paradox can be avoided if the state of CTC  
registers is a fixed point of the mapping induced by interaction  
with the CR registers.  Mixed state fixed point always exists.   



Deutsch CTCs 

U 

Chronology 
respecting  
(CR) registers 

CTC registers 

ρCR ρ'CR 

ρCTC 

State emerging from the interaction:  U ρCR - ρCTC Uy  
 

Consistency requirement:  
    Output in CTC registers = TrCR U ρCR - ρCTC Uy = ρCTC   

 
Evolution of CR registers: ρ'CR = TrCTC U ρCR - ρCTC Uy  
 

    NB The fixed point ρCTC depends on ρCR  ∴ the CR registers evolve nonlinearly. 

Reduces to QM far away 
No Grandfather paradox 
Count complexity of U 
Unitary freedom in CTC 



Example (Bacon03) 

Chronology 
respecting  
(CR) registers 

CTC registers 

ρCR ρ'CR 

ρCTC 

For ρCR =  
 
 
solving for: TrCR U ρCR - ρCTC Uy = ρCTC   
 

        gives  ρ'CR = TrCTC U ρCR - ρCTC Uy = 
 

½+r  w 
 w* ½-r  

nonlinear! ½+r2  0 
 0  ½-r2  



Example (Bacon03) 

Chronology 
respecting  
(CR) registers 

CTC registers 

ρCR ρ'CR 

ρCTC 

For ρCR =  
 
 
solving for: TrCR U ρCR - ρCTC Uy = ρCTC   
 

        gives  ρ'CR = TrCTC U ρCR - ρCTC Uy = 
 

½+r  w 
 w* ½-r  

... 

ρ(k)
CR 

Repeat k times,  

½+r  0 
 0  ½-r  

1  0 
0  0   

½  0 
 0  ½  ¼ 

if r=1/2 

if r<1/2 

½+r2  0 
 0  ½-r2  



Example (Brun, Harrington, Wilde 2008): 

where U00 = SWAP,  U01 = X - X, U10 = XH - I, U11 = (X-X) SWAP. 

For |ψi = |0i, |1i, |+i, |-i,  |αi|βi = |00i, |01i, |10i, |11i resp. 

|ψi 

|0i 

ρCTC 

|αi 

|βi 

note cannot  
distinguish 
nonortho 
states in QM 
 
explain the  
+/- states 

Can this circuit break BB84 ??   
 
What is |Ãi for this problem?  
 



State discrimination 

doesn’t  
know x 

R: someone who knows 
½x or where ½x originates 

|yihy| 
Referee 
wp px 

|xihx| 

ρx Alice 

Initial state: ∑x px |xihx| - ½x 

Final state: ∑x px |xihx| - q(y|x) |yihy| 

succeeds if    ¼ ∑x px |xihx| - |xihx| 



State discrimination with Deutsch CTCs 

doesn’t  
know x 

|yihy| 
Referee 
wp px 

|xihx| 

ρx Alice 

Initial state: ∑x px |xihx| - ½x 

Thus, ½CR = ∑x px ½x  = ¹ (or equivalently ∑x px |xihx| - ½x )  

Solving for: TrCR U µCR - ρCTC Uy = ρCTC  independent of x 
 

        gives  ρ'CR = TrCTC U µCR - ρCTC Uy = º independent of x 
 

Output state: ∑x px |xihx| - º   
  and the answer is independent of the question 

The fixed point ¹ is  
independent of x, 
and can be calculated  
and prepared by Alice  
without a CTC ...  



The nonlinearity trap: 

If the mapping ½ ! T(½) is nonlinear,  
 
then  “8x, ½x ! T(½x)”  )  “∑x px ½x ! ∑x px T(½x)”  
 

     or   “∑x px |xihx| - ½x  
    ! ∑x px |xihx| -T(½x)” 

 
 
 



Punchline   –  the Deutsch CTC does not improve one’s  
    ability to perform state discrimination  

 
(unless the state to be discriminated is predetermined ...)  



Computational consequences: 

|f(x)ihf(x)| |xihx| 
½f(x) 

Bacon 03 (for solving NP problems): 

|f(x)ihf(x)| |xihx| 

Aaronson-Watrous-Fortnow 08 (for solving PSPACE problems): 

½CTC(x) unambiguously encodes f(x)!  



NP: problems solvable by 
non-deterministic Turing  
machine in poly time 

QMA 

PSPACE: problems solvable  
by deterministic Turing  
machine in poly space 

PP=PostBQP 

check if PP \subset PSPACE 
NP \subset QMA 



Computational consequences: 

The nonlinearity trap implies that   
	
∑x px |xihx| - |xihx| ! ∑x px |xihx| - |f(x)ihf(x)| 

Depending on whether the machine has to succeed on one  
specific input, or any arbitrary distribution of inputs, the  
Deutsch CTCs offer spectacular or no advantage.  

|f(x)ihf(x)| |xihx| 
½f(x) 

Bacon 03 (for solving NP problems): 

|f(x)ihf(x)| |xihx| 

Aaronson-Watrous-Fortnow 08 (for solving PSPACE problems): 

½CTC(x) unambiguously encodes f(x)!  



Outline 

1. Deutsch CTCs (closed timelike curves) 
 

    - Method to discriminate non-orthogonal states ? 
 

    - Algorithms for solving NP or PSPACE problems ? 
 

    - Nonlinearity trap 

2. Postselected CTCs  
 

    - Method to discriminate non-orthogonal states 
 

    - Algorithms for solving PP problems 
 

    - Environmental concerns 
 

    - Fault-tolerance ?  
 



Deustch 



Postselection: 

A regular measurement in quantum mechanics: 
 
  ½ ! ∑k Ak ½ Ak

y - |kihk| 
 
where prob(k|½) = tr(½ Ak

y Ak) and ∑k Ak
y Ak = I . 

 
A postselected measurement allows some terms to be omitted  
in the above: 
  

 ½ ! [ ∑k2S Ak ½ Ak
y - |kihk| ] / [∑k2S tr(½ Ak

y Ak)] 
 
where  ∑k2S Ak

y Ak · I . 
 
The only nonlinearity is an input-dependent rescaling.   
Also, postselection can be delayed until the last step  
[Aaronson 04, Brun-Wilde 11]).  

i.e, one of the  
outcomes must  
happen 

Nonlinearity trap free !! 



A remark on complexity: 

We only consider very simple measurements, and postselection  
of their outcomes.   Else we can cheat, say, by postselecting the  
correct answers from a uniform distribution of all possibilities ...  
 
Simple postselected measurements:  
e.g., postselection of  “0” outconme in the von Neumann  
measurement of {|0i, |1i} 
e.g., postselection of  the outcome corresponding to  
|©0i=|00i+|11i in the measurement along the Bell basis.  
 



Consequences of postselection: 

1. Classical simulation of time travel (Bennett & Schumacher 02) 

Interaction between system P and B  

F P 

Guess 
0 or 1 
in both  
sys A & B 

A 

B 

Post 
select 
A=F 

Each of  
APFB is  
a bit.  

The future F, which is same as A, same as B, has interacted  
with its past P !    



Consequences of postselection: 

1. Quantum simulation of time travel (Bennett & Schumacher 02) 

Interaction between system P and B  

F P 

A 

B 

Post 
select 

After postselection, system F is teleported to system B ! 
 

|©0i 
|©0i 

Each of  
APFB is  
a qubit.  



Consequences of postselection: 

1. Teleportation  

F 

A 

B 

Bell 
meas 

After postselection, system F is teleported to system B ! 

|©0i 

Outcome  
corr to |©ii state to be  

teleported 

¾i 
state  
teleported 



Consequences of postselection: 

1. Quantum simulation of time travel (Bennett & Schumacher 02) 

Interaction between system P and B  

F P 

A 

B 

Post 
select 

After postselection, system F is teleported to system B ! 
 
Again, the future F state (reincarnated as B) has interacted  
with its past P !    

|©0i 
|©0i 

This circuit has also  
appeared in Gottesman- 
Preskill 2003 concerning 
blackhole final states.  



Consequences of postselection: 

1. Quantum simulation of time travel (Bennett & Schumacher 02) 

F P 

A 

B 

Post 
select 

|©0i 
|©0i 

Q:  Is it time travel?   
A:  It depends on what your definition of “is” is. 
 
Q:  Does it clone?  
A:  No.  F is only reincarnated in B ...  
 
Q:  What about grand father paradox?   
A:  Only happens on a set of state of measure 0!  



Consequences of postselection: 

Example how the grandfather paradox manifest itself: 

F P 

A 

B 

Post 
select 

|©0i 
|©0i 

|Ãi=a|0i+b|1i 

|Ã’i=|0i 
wp a2/2 

The grand father paradox occurs if the initial state is |Ãi=|1i  
(i.e., a=0) .   Thus, this circuit postselects |0i. 
 
Conversely, knowing how to postselect |0i enables postselection  
of |©0i and thus times travel as shown above.  

H 

Thus, postselection and postselected CTCs are interchangeable 
computational primitives.   



Consequences of postselection: 

2. Perfect discrimination of linearly independent pure states  
    {|ψxi} (Brun, Wilde 10) 

It’s known how to perfectly discriminate such states if the  
answer “I don’t know” is allowed to occur some times 
(unambiguous state discrimination).    
 
“Postreject”  “I don’t know” –  
 

 take a |0i state, conditioned on “I don’t know”,  
 turn apply a bit flip, then postselect |0i. 



Consequences of postselection: 

3.   PostBQP  =   PP  (Aaronson04) 

Problems solvable by  
poly-time quantum  
computer given post- 
selected measurements 

Problems for which 9 a  
probabilistic poly-time  
Turing machine that  
accepts with prob ¸ ½  
iff answer is “yes.”  

NB this gives simple proof for closure of PP since closure  
of PostBQP is simple to show.   



NP: problems solvable by 
non-deterministic Turing  
machine in poly time 

QMA 

PSPACE: problems solvable  
by deterministic Turing  
machine in poly space 

PP=PostBQP 

PP: problems solvable by  
a probabilistic poly-time  
Turing machine (accepting 
wp ¸ ½ iff answer is yes) 

check if PP \subset PSPACE 
NP \subset QMA 



Consequences of postselection: 

3.   PostBQP  =   PP  (Aaronson04) 

Idea behind a PostBQP algorithm for a PP-complete problem: 
 

Let s be # satisfying assignments for a Boolean formula with n  
variables.  Determine whether s ¸ 2n-1 (1/2 of all possibilities).  

|xi 

|Ãsi  ∝ 2n|0i + (2n-2s) |1i 
|0i e - i θ σx post-

select |0i 

Reduces the amplitude of |0i  
by an amount depending on θ. 

States close to |0i (the hardest case 
when s ¼ 2n-1) is mapped to ¼ |0i§|1i  
so the Y/N ans can be distinguished.  

|0i+|1i |0i-|1i 

|0i 
Y N 



1. How physical is postselection?  
 
2. Is it possible to make the computation model fault-tolerant? 
 
    Note the algorithm to solve PP complete problems requires  
    accuracy exponential in the input size.   



Consequences of postselection: 

4. Environmental destruction   
 

 (a) faster than light communication  

if message is a, 
post-select  “|ai” 

|00i+|11i 

Alice 

Bob 

Now, Bob’s state is  
also |ai. He finds “a”  
by measuring along  
basis {|0i,|1i}. 

(b) state change in remote system  

(c) inconsistency in defining Bob’s state ...  
     Is it |0i or |1i or I/2?   
     NB no temporal ordering between Alice’s & Bob’s steps! 

Are these  
features  
or bugs?   



Green processes: 

1. We say that an operation T is (coherently) green if it does not  
affect the state of any other systems not being acted on.   

  T 

arbitrary  
  initial 
state |Ãi 

Any reference system R  
correlated with S.   

S 

R 

2. T is discretely green if R is classical above  
 
3. T is approximately green if the condition * holds approx.   
 

T is green if, 8 |ÃiRS, TrS (I-T)(|ÃihÃ|RS)  ∝  TrS (|ÃihÃ|RS)    
* 



Results:  
 
1. Exactly coherently or discretely green CTCs can be 
    implemented exactly using regular quantum mechanics. 
 
    So, they cannot improve our information theoretic  
    ability to perform state discrimination.   
 
    Whether there is a computational advantage or not is 
    still open (known algorithms use very nongreen CTCs) 
 
2. For approx green CTCs, if enough are used together,   
    they’re not green at all.  If few are allowed, they can  
    be well approximated by regular QM.  

NB: very easy to show the above since we can use the Kraus  
decomposition and linearity.   



5. What about noise?   
 
Algorithm to solve PP problems using postselection requires  
error rate · O(2-n).   

Are fault-tolerant protocols and threshold analysis applicable 
in PostBQP?   
 
Thanks to John (and many others – Daniel Gottesman, Panos 
Aliferis, Peter Shor, Andrew Steane, Manny Knill, ...)  
we know that if we recursively replace physical operations  
by fault-tolerant gadgets, and if the physical noise model is  
sufficiently benign, k levels of concatenation allows simulation  
of a logical computation at an effective noise rate O(²2k) if the 
physical noise rate is ² .   
 
Thus k ¼ O(log n) levels are sufficient to maintain the desired 
accuracy, and the resource overhead is poly(n).   



5. What about noise?   

|xi 

|Ãi ∝ 2n|0i + (2n-2s) |1i 
|0i e - i θ σx post-

select |0i 

measure  
 |0i§|1i 

We know how to fault-tolerantly simulate the above logical  
circuit to high accuracy, except for the postselected meas.  
 

What doesn’t work:  
 

a. decoding first, which incurs too much physical noise 

Suppose we’re postselecting |0i from a|0i+ b|1i where  
a ¼ 2-n, b ¼ 1.  Let the bit flip prob be ².  
There are 2 ways to postselect |0i:  
With prob (1-²) |a|2  : “there’s no bit flip and state was|0i”  
With prob    ²    |b|2 :  “there’s a bit flip and state was |1i”  
The second event is much more likely ... for large n.   



5. What about noise?   

What doesn’t work (to enable fault tolerant postselection):  
 

b. Perform one level of coding and measure the logical |0i. 
 

All known fault tolerant measurements deduce the logical  
measurement outcomes based on parities of measurement  
outcomes of multiple qubits.    
 
To postselect an unlikely outcome, a physical error followed  
by post-selection of the wrong outcome is much more likely  
than post-selection of the correct outcome.   
 
Such encoded measurement amplifies (not reduces) the  
effective error rate on inputs of the most interest.  
 
... not sure how to make fault-tolerant gadget for  
postselected measurement.    



5. What about noise?   

What doesn’t work (to enable fault tolerant postselection):  
 

c. Level reduction cannot be applied due to the lack of  
    fault tolerant gadget for postselected measurement.  
 
   Without level reduction, little hope to lower effective  
   error rate. 
 
   No eggs, and no chicken.   
 
d. Direct analysis of a level-k logical measurement yields  
similarly negative results ...    

We emphasize that our analysis are case studies, rather  
than no-go proof for fault tolerance in PostBQP.   



Conclusion 

1. Deutsch CTCs (closed timelike curves) 
 

    - Method to discriminate non-orthogonal states   X 
 

    - Algorithms for solving NP or PSPACE problems   X ?  
 

    - Nonlinearity trap 

2. Postselected CTCs  
 

    - Method to discriminate non-orthogonal states 
 

    - Algorithms for solving PP problems 
 

    - Environmental concerns 
 

    - Fault-tolerance   ??  
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