
Where	  and	  when	  
can	  a	  qubit	  be?	  
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FIG. 2: A summoning task in 1+1 dimensions. In this exam-
ple, a simple strategy will work even though z

1

is not in the
future light cone of z

0

. The quantum state is first transported
along the arrow to P . The call information originating at y

0

is
broadcast into its future light cone and accessed at the point
P . If the call is for z

0

, the quantum state is moved there. If
not, it is moved to z

1

.

be a↵ected by a request at yj and a↵ect the outcome
at zj . A qubit can be summoned to zj from yj if and
only if the qubit is localized in the causal diamond Dj .
Therefore, the summoning task is possible if and only if
the qubit is localized to each and every one of the causal
diamonds {D

1

, D
2

, . . . , Dn�1

}.
To understand the definition and the surprising variety

phenomena it allows, it will be helpful to consider some
important examples. The simplest one consists of just
two call points coinciding precisely with their associated
reveal points, and in the forward light cone of a qubit [22]
in the state |'i at the starting point. If the two call points
are not spacelike to each other, then the qubit can sim-
ply be transmitted to each call point in turn. On the
other hand, Kent observed that if the two call points are
spacelike to each other, the impossibility of superluminal
signalling implies that being able to successfully summon
|'i would amount to being able to send |'i to both the
reveal points, which is a clear violation of the no-cloning
principle. Despite its simplicity, this no-summoning theo-
rem has significant consequences for information process-
ing. In the same way that the no-cloning theorem gives
rise to secret key distribution protocols secured by the
laws of quantum mechanics, the no-summoning theorem
gives rise to secure bit commitment protocols secured by
a combination of quantum mechanics and relativity [8].
Secure bit commitment is impossible using quantum me-
chanics alone [9, 10].

Another simple example in 1+1 dimensions is shown in
Figure 2. Even though there is no causal curve through
each of the reveal points, it is still possible to complete
the summoning task. The example illustrates that if
there is a causal curve passing through each of the causal
diamonds, then summoning will be possible.
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FIG. 3: Exploiting quantum error correction. One share of a
((2, 3)) threshold quantum secret sharing scheme is allocated
to each of the call points yj . Meanwhile, each reveal point zj
is lightlike to both yj and yj+1mod 3

. (The vertical direction
is time. The arrows are causal, in this case lightlike, curves.)
If the participants follow the protocol described in the text,
then the correct reveal point will receive enough shares to
reconstruct the secret.

When more spatial dimensions are introduced, delocal-
ization becomes crucial in understanding which configu-
rations of causal diamonds are compatible. For an repre-
sentative example, place three call points at time zero on
the vertices of an equilateral triangle with edge lengths `.
Place the reveal points at time `/(2c) on the midpoints
of the edges, for c the speed of light. Because the call-
reveal pairs are lightlike, the diamonds Di are just line
segments, as shown in Figure 3. There is no causal curve
through the diamonds Di, so the strategy of simply mov-
ing the qubit around won’t work. Delocalizing the qubit
through the use of quantum error correcting codes will,
however. It is possible to encode the quantum state |'i
into a tripartite Hilbert space H

1

⌦H
2

⌦H
3

such that the
qubit can be recovered even if any one of the correspond-
ing three quantum subsystems is lost. This is known as a
((2, 3)) threshold quantum secret sharing scheme because
the quantum information can be recovered from any two
of the three subsystems even though no information at
all can be recovered from fewer than two [11]. This en-
coding is performed at the start point s and then one
share is forwarded to each of the call points. For each j,
if the request is made at yj , then that share is forwarded
to zj . Otherwise, that share is forwarded to zj�1mod 3

.
By this arrangement the correct reveal point will receive
two out the three shares as required to recover the state.
The example reveals one interesting way to delocalize

a quantum state. To address the full variety of ways in
which quantum information can be distributed in space-
time, the following theorem characterizes every summon-
ing task in Minkowski space as possible or impossible.

Theorem 1 Summoning is possible if and only if the fol-

lowing conditions hold:

1. Every reveal point is in the future light cone of the

3

starting point s.

2. For each pair (i, j), the diamonds Di and Dj are

causally related, meaning that there exists a causal

curve from Di to Dj or vice versa.

The two conditions are necessary because they encode
the most basic constraints coming from relativity and
quantum mechanics, namely causality and the impossi-
bility of cloning. Indeed, Condition 1 is manifestly the
prohibition of superluminal communication. Condition
2 arises from reasoning similar to Kent’s treatment of
“non-ideal” summoning [6]. Suppose we have a success-
ful summoning protocol for which Condition 2 is violated,
meaning that two diamonds Di and Dj are spacelike sep-
arated as in Figure 1. If the call is received at yi, there is
a procedure that will reveal the state at zi. Now imagine
that the call machinery malfunctions such that it makes
a call at yj in addition to the one at yi. Because yj is not
in the causal past of zi, the malfunction cannot prevent
the state from being revealed at zi. Likewise, because yi
is not in the causal past of zj , the call at yj will result in
the state successfully being revealed at zj . This proce-
dure therefore reveals the state |'i at the two spacelike
points zi and zj starting from a single copy of |'i at
the point s. In other words, a summoning protocol for a
configuration violating Condition 2 is easily modified to
make a cloning machine, which is impossible.

To see that Conditions 1 and 2 are su�cient will re-
quire constructing a protocol that will succeed at the
summoning task given a starting point and n call-reveal
pairs satisfying the conditions. The structure of the pro-
tocol will only depend on the directed graph G = (V,E)
whose vertices are labelled by the diamondsDi and which
contains the edge (Di, Dj) if and only if there is a causal
curve from some point in Di to one in Dj .

It is possible to handle the n = 2 case by making use
of a strategy from [7]. Without loss of generality, assume
there is a causal curve from D

0

to D
1

. Begin by dis-
tributing a Bell pair between the spatial locations of the
start point and y

0

. Upon receiving the quantum state
at the start point, immediately teleport it over the Bell
pair [5], sending the classical teleportation data to both
z
0

and z
1

. Meanwhile, if the call is received at y
0

, for-
ward the other half of the Bell pair to z

0

, but if no call is
received, forward it to z

1

. Because there is a causal curve
from the start point to both z

0

and z
1

, and because there
is a causal curve from D

0

and D
1

(which, in particular,
guarantees there is a causal curve from y

0

to z
1

), both
the classical data and the half of the Bell pair required
to reconstruct the quantum state will arrive at the ap-
propriate reveal point. Figure 4 depicts an example in
which this protocol succeeds but the simpler strategy of
carrying the qubit through the causal diamonds fails.

Using quantum error correction, a protocol for gen-
eral n can be built recursively from the protocol for
n = 2. Encode the state |'i at the starting point s
in an ((n � 1, n)) threshold secret sharing scheme [11].
There are n subsets of {D

1

, D
2

, . . . , Dn} of size n � 1.

s

y
0

y
1

z
0

z
1

FIG. 4: The general strategy for completing two-request tasks
can be used to complete this example, even though y

0

and y
1

are outside the light cone of s. The essence of teleportation
is that it splits a qubit into entanglement and classical data
transmission, thereby making it possible to delocalize quan-
tum information in a curious way: classical data can be trans-
mitted to several recipients without regard to the no-cloning
theorem while entanglement reaches outside the light cone.
Both features are crucial in this example.
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FIG. 5: a) This configuration of four call-reveal spacetime
points satisfies the conditions of Theorem 1 and requires a
combination of error correction and teleportation for success-
ful summoning. Each reveal point is again lightlike to its
call point and zj is causal to the call point yj�1mod 4

. In
addition, z

0

is lightlike to y
2

and z
3

is lightlike to y
1

. b)
The graph G of causal relationships used to construct the
summoning protocol. The subproblem involving the cycle
D

0

! D
2

! D
3

! D
0

is structurally equivalent to the ex-
ample illustrated in Figure 3, although the recursive protocol
replaces direct quantum communication by teleportation. c)
The code used in the e�cient construction has one physical
qubit for each edge of this graph, G0. The arcs label the four
sets of doubled edges su�cient to reconstruct the state. In the
protocol, if there is a request at y

0

, for example, the qubits
on the solid edges are sent to z

0

.

Assign one of the n shares to each of the subsets and for
each subset recursively execute the protocol, now on the
smaller subset of size n � 1. If the request is made at
call point yj , then for each of the subsets containing Dj ,
the corresponding protocol will forward its share of the
secret to zj . Precisely n� 1 of the n subsets contain Dj ,
so the state |'i will be recoverable at zj , as required. An
example for n = 4 is sketched in Figures 5a and 5b.
E�cient construction— The protocol described in

Based	  on	  arXiv:1210.0913	  with	  Alex	  May	  
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We’re	  delighted	  to	  celebrate	  our	  friend	  most	  illustrious,	  
A	  scienLst	  brilliant	  and	  uncommon	  industrious.	  
From	  quarks	  to	  the	  cosmos,	  he	  doesn't	  dissemble,	  
He's	  a	  storehouse	  of	  knowledge,	  with	  effort	  assembled.	  
	  
He	  pointed	  out	  early	  the	  need	  to	  be	  leery	  
Of	  the	  prevailing	  cosmological	  theory.	  
Our	  universe	  should	  have	  been	  full	  to	  afflicLon	  
With	  magnets	  diverging	  against	  Gauss's	  prescripLon.	  
	  
An	  expert	  on	  parLcles,	  fields	  and	  forces,	  
He	  juggled	  axions,	  symmetries,	  masses	  (and	  courses).	  
But	  somewhere	  along	  the	  proverbial	  way,	  
Quantum	  computers	  became	  his	  dossier.	  
	  
For	  corrupLon	  from	  bit	  flips	  all	  the	  way	  to	  bosonic,	  
He's	  invented	  new	  gadgets	  that	  are	  just	  the	  right	  tonic.	  
	  
For	  Alice	  and	  Bob	  filtering	  long-‐estranged	  Eve,	  
He	  proved	  that	  entanglement	  provided	  the	  sieve.	  
	  
And	  in	  systems	  exoLc	  confined	  to	  the	  plane,	  
He	  found	  qubits	  tangled	  in	  quasiparLcle	  skeins.	  
	  
How	  fortunate	  we	  are	  this	  spaceLme	  to	  share,	  
And	  to	  all	  wish	  John	  Preskill	  bon	  anniversaire.	  



Quantum	  information	  bedrock	  

Quantum	  information	  cannot	  be	  cloned.	  
	  
	  

And	  yet…	  

x	  

t	  

|'i

|'i

|'i

|'iQuantum	  information	  must	  be	  
widely	  replicated	  in	  spacetime.	  

Quantum	  information	  cannot	  be	  
replicated	  in	  space.	  

This	  talk	  will	  precisely	  characterize	  
which	  forms	  of	  replication	  are	  possible.	  

Goal:	  understand	  how	  quantum	  information	  	  
can	  be	  distributed	  in	  space	  and	  time	  

|'i 67! |'i|'i



The	  inadequacy	  of	  trajectories	  

|'i

Measure	  

Uj	  

j	  

Bell	  pair	  

|'i

Teleportation	  

Figure	  credits:	  Gisin	  group	  (Geneva)	  and	  Qi-‐Zhang	  (Stanford)	  

Topological	  order	  

x	  

t	  

Topologically	  encoded	  quantum	  	  
information	  is	  delocalized	  

derivative, expressible as a surface
term, given by the expression in
parenthesis. That surface term is the
same Chern–Simons term that de-
scribes the topological field theory of
the QH state. In the QH field theory,
the term’s coefficient specifies the
value of the Hall conductance.14 Here
the coefficient of θ = π translates into
a Hall conductance of 1⁄2 e2/h, half the
conductance of the first QH plateau.
That value is uniquely associated
with the single Dirac cone on the sur-
face of topological insulators. Any
random disorder can change a sys-
tem’s Hall conductance only by an
 integer multiple of e2/h, thus the 
half-QH conductance of 1⁄2 e2/h can
never be reduced to zero by disor-
der—the surface states are topologi-
cally robust. 

Outlook
The field of topological insulators is
growing rapidly, and many remark-
able experiments have been carried
out. In nonlocal transport measure-
ments in a series of HgTe devices, the Würzburg group con-
firmed that transport current is carried by the QSH edge
states. The topological insulators Bi2Te3 and Bi2Se3 fabricated
in nanoribbon form at Stanford and by molecular-beam epi-
taxy at Tsinghua University. Scanning tunneling  microscopy
experiments have been carried out at Princeton, Stanford,
and Tsinghua universities to probe the topological surface
states. Preliminary transport measurements indicate domi-
nant contributions from surface states.

Solving Maxwell’s equations with the topological term
included leads to predictions of novel physical properties
characterized by exotic excitations. The 2D QSH insulator is
predicted to have fractional charge at the edge and spin–
charge separation in the bulk. In introductory physics classes
we learned that a point charge above a metal or an insulator
can be viewed as inducing an image charge below the sur-
face. A point charge above the surface of a 3D topological in-
sulator is predicted to induce not only an image electric
charge but also an image magnetic monopole below the sur-
face,12 as shown in figure 5a. Such a composite object of elec-
tric and magnetic charges, called a dyon, would obey neither
Bose nor Fermi statistics but would behave like a so-called
anyon with any possible statistics. Dislocations inside a 3D
topological insulator contain electronic states that behave
similarly to QSH edge states.

Axions are weakly interacting particles postulated to
solve some puzzles in the standard model of particle
physics16 (see the article by Karl van Bibber and Leslie Rosen-
berg, PHYSICS TODAY, August 2006, page 30). Those elusive
particles are also predicted to exist inside topological mag-
netic insulators, systems for which the θ parameter above be-
comes dependent on position and time. Majorana fermions
are distinct from the familiar Dirac fermions: They are their
own antiparticles. There is still no conclusive evidence for
Majorana fermions in nature. But when a superconductor is
close to the surface of a topological insulator, Majorana fermi-
ons are predicted to occur inside vortices (see figure 5b).17

Besides teaching us about the quantum world, the exotic
particles in topological insulators could find novel uses. For
example, image monopoles could be used to write magnetic

memory by purely electric means, and the Majorana fermions
could be used for topological quantum computing.18

Albert Einstein insisted that all fundamental laws of
physics should be expressed in terms of geometry, and he ex-
emplified that ancient Greek ideal by formulating the theory
of gravity in terms of the geometrical curvature of space and
time. Physicists are now pursuing Einstein’s dream one step
further, exploring the fundamental laws expressed in terms
of topological field theory. The standard model of elementary
particles contains a topological term that is identical to the Sθ
term that defines topological insulators. Even if only a small
number of the predicted exotic particles are observed in topo-
logical insulators, our fundamental understanding of nature
would be greatly enhanced. Such tabletop experiments could
become a window into the standard model16 and help reveal
the alluring beauty and mysteries of our universe.
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Figure 5. Novel behavior is predicted for topological insulators. (a) When a topo-
logical insulator (TI, green) is coated by a thin ferromagnetic layer (gray), each
electron (red sphere) in the vicinity of the surface induces an image monopole
(blue sphere) right beneath it.12 When one electron winds around another (red 
circle), it will experience the magnetic flux (arrows in the blue dome) carried by
the image monopole of the other, so that the  electron– monopole composite,
called a dyon, obeys fractional statistics. (b) When a TI is coated by an s-wave
 superconductor (SC), the superconducting vortices are Majorana fermions—they
are their own antiparticles. Exchanging or braiding Majorana vortices, as sketched
here, leads to non-abelian statistics.17 Such behavior could form the basis for topo-
logical quantum computing. 

In	  principle	  robust	  to	  local	  noise	  

Information	  replicated	  in	  multiple	  
overlapping	  spatial	  regions	  



Cloning,	  Black	  Holes	  and	  Firewalls	  

Radial	  light	  	  
rays:	  

In	   Out	  

Singularity	  
U	   V	  

|'i

|'i

[Page,	  Preskill,	  Susskind	  93][Susskind,	  Thorlacius,	  Uglum	  93]	  

Quantum	  informaLon	  appears	  to	  be	  cloned	  

SpaceLme	  structure	  prevents	  	  
comparison	  of	  the	  clones	  (?)	  

Is	  unitarity	  safe?	  

2007:	  H	  &	  Preskill	  study	  old	  black	  holes.	  

2012:	  Almheiri	  et	  al.	  consider	  φ	  to	  be	  	  
entanglement	  with	  late	  Lme	  Hawking	  photon	  
Firewalls!	  

(Only	  just)	  safe	  

|'i
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•  Summoning	  information	  in	  spacetime	  
– Where	  and	  when	  is	  my	  quantum	  information?	  

•  Simple	  examples	  
•  The	  general	  case	  
– Complete	  characterization	  of	  which	  spacetime	  
regions	  can	  contain	  the	  same	  quantum	  
information	  

•  Conclusions	  
– Application	  to	  cryptography	  



Summoning	  
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y0 y1

Unknown	  quantum	  information	  	  
is	  originally	  localized	  at	  s.	  

A	  request	  for	  the	  info	  will	  be	  made	  at	  
either	  y0	  or	  y1,	  at	  which	  point	  the	  state	  
must	  be	  exhibited	  at	  z0	  or	  z1,	  resp.	  

This	  is	  prohibited	  by	  the	  combination	  
of	  no-‐cloning	  and	  relativistic	  causality	  
if	  the	  line	  segments	  y0z0	  and	  y1z1	  are	  
outside	  each	  others’	  lightcones.	  

z1z0

Kent	  :	  arXiv:1101.4612	  	  

Request	  pt	  

Reveal	  pt	  
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Unknown	  quantum	  information	  
	  is	  originally	  localized	  at	  s.	  

A	  request	  for	  the	  info	  will	  be	  made	  at	  
either	  y0	  or	  y1,	  at	  which	  point	  the	  state	  
must	  be	  exhibited	  at	  z0	  or	  z1,	  resp.	  

This	  is	  possible	  if…?	  

z1

z0

Summoning	  is	  possible	  iff	  z1	  is	  in	  the	  	  
future	  of	  y0	  or	  z0	  is	  in	  the	  future	  of	  y1.	  
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Minkowski space as possible or impossible.

Theorem 1 Summoning is possible if and only if the following
conditions hold:

1. Every reveal point is in the future light cone of the start-
ing point s.

2. For each pair (i, j), the diamonds Di and Dj are
causally related, meaning that there exists a causal
curve from Di to Dj or vice versa.

In other words, a set of causal diamonds can all contain the
same quantum information if and only if the diamonds are all
causally related to each other. The two conditions are nec-
essary because they encode the most basic constraints com-
ing from relativity and quantum mechanics, namely causality
and the impossibility of cloning. Indeed, Condition 1 is man-
ifestly the prohibition of superluminal communication. Con-
dition 2 arises from reasoning similar to Kent’s treatment of
“non-ideal” summoning [? ]. Suppose there is a successful
summoning protocol for which Condition 2 is violated, mean-
ing that two diamonds Di and Dj are spacelike separated as
in Figure 1. If the call is received at yi, there is a procedure
that will reveal the state at zi. Now imagine that the call ma-
chinery malfunctions such that it makes a call at yj in addition
to the one at yi. Because yj is not in the causal past of zi, the
malfunction cannot prevent the state from being revealed at
zi. Likewise, because yi is not in the causal past of zj , the
call at yj will result in the state successfully being revealed at
zj . This procedure therefore reveals the state |'i at the two
spacelike points zi and zj starting from a single copy of |'i at
the point s. In other words, a summoning protocol for a con-
figuration violating Condition 2 is easily modified to make a
cloning machine, which is impossible.

To see that Conditions 1 and 2 are sufficient will require
constructing a protocol that will succeed at the summoning
task given a starting point and n call-reveal pairs satisfying
the conditions. The structure of the protocol will only depend
on the directed graph G = (V,E) whose vertices are labelled
by the diamonds Di and which contains the edge (Di, Dj) if
and only if there is a causal curve from some point in Di to
one in Dj .

It is possible to handle the n = 2 case by making use of
teleportation [? ]. Without loss of generality, assume there is
a causal curve from D

0

to D
1

. Begin by distributing a Bell
pair between the spatial locations of the start point and y

0

.
Upon receiving the quantum state at the start point, immedi-
ately teleport it over the Bell pair [? ], sending the classical
teleportation data to both z

0

and z
1

. Meanwhile, if the call is
received at y

0

, forward the other half of the Bell pair to z
0

, but
if no call is received, forward it to z

1

. Because there is a causal
curve from the start point to both z

0

and z
1

, and because there
is a causal curve from D

0

and D
1

(which, in particular, guar-
antees there is a causal curve from y

0

to z
1

), both the classical
data and the half of the Bell pair required to reconstruct the
quantum state will arrive at the appropriate reveal point. Fig-
ure ?? depicts an example in which this protocol succeeds but

s

y
0

y
1

z
0

z
1

FIG. 4: Exploiting teleportation. The n = 2 strategy can be used to
complete this example, even though y

0

and y
1

are outside the light
cone of s. The essence of teleportation is that it splits a qubit into
entanglement and classical data transmission, thereby making it pos-
sible to delocalize quantum information in a curious way: classical
data can be transmitted to several recipients without regard to the no-
cloning theorem while entanglement reaches outside the light cone.
Both features are crucial in this example.

the simpler strategy of carrying the qubit through the causal
diamonds fails.

Using quantum error correction, a protocol for general n
can be built recursively from the protocol for n = 2. En-
code the state |'i at the starting point s in an ((n � 1, n))
threshold secret sharing scheme [? ]. There are n subsets of
{D

1

, D
2

, . . . , Dn} of size n � 1. Assign one of the n shares
to each of the subsets and for each subset recursively execute
the protocol, now on the smaller subset of size n�1. If the re-
quest is made at call point yj , then for each of the subsets con-
taining Dj , the corresponding protocol will forward its share
of the secret to zj . Precisely n � 1 of the n subsets contain
Dj , so the state |'i will be recoverable at zj , as required. An
example for n = 4 is sketched in Figures 5a and 5b.

Efficient construction— The protocol described in the
proof of Theorem ?? is unfortunately inefficient, using
roughly n! qubits. Practicality aside, such dramatic growth
quickly runs afoul of the holographic bound, which places a
limit of roughly 1.4 ⇥ 1069 bits per square meter: trying to
store the protocol’s qubits in a region centred at s of area of 1
m2 would already create a black hole for n = 55. (See, e.g.,
[? ].) Understanding summoning in the presence of gravity
therefore requires finding more efficient protocols.

The high cost is incurred from the recursive encoding pre-
ceding teleportation, so we will show how to achieve the same
functionality directly. To begin, it will be helpful to charac-
terize that functionality. The recursive encoding produces a
quantum error correcting code with shares associated to the
edges of the graph G. Should the call arrive at yj , teleporta-
tion is used to ensure that all shares associated to the edges
incident to Dj arrive at the reveal point zj . The functional-
ity required of the code is therefore clear: it must be possible
to recover the encoded quantum state using only those shares
received at zj . That is, the erasure of shares for any combi-
nation of edges leaving at least one vertex untouched must be
recoverable, as illustrated in Figure 5c.

That describes an unusual quantum error correcting code.

Teleportation:	  A	  nontrivial	  example	  

Direct	  transmission	  of	  φ	  from	  s	  to	  the	  	  
correct	  z0	  or	  z1	  is	  impossible	  

Request	  arrives	  at	  y0	  or	  y1	  

Instead,	  a	  Bell	  pair	  is	  shared	  between	  s	  and	  y0	  

Teleportation	  measurement	  performed	  at	  s,	  with	  	  
outcome	  forwarded	  to	  both	  z0	  and	  z1	  

Half	  of	  Bell	  pair	  at	  y0	  sent	  to	  either	  z0	  or	  z1	  	  
depending	  on	  request	  

Classical	  data:	  unconstrained	  by	  no-‐cloning	  
Entanglement:	  unconstrained	  by	  causality	  

Kent	  :	  arXiv:1204.4022	  
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FIG. 2: A summoning task in 1+1 dimensions. In this exam-
ple, a simple strategy will work even though z

1

is not in the
future light cone of z

0

. The quantum state is first transported
along the arrow to P . The call information originating at y

0

is
broadcast into its future light cone and accessed at the point
P . If the call is for z

0

, the quantum state is moved there. If
not, it is moved to z

1

.

be a↵ected by a request at yj and a↵ect the outcome
at zj . A qubit can be summoned to zj from yj if and
only if the qubit is localized in the causal diamond Dj .
Therefore, the summoning task is possible if and only if
the qubit is localized to each and every one of the causal
diamonds {D

1

, D
2

, . . . , Dn�1

}.
To understand the definition and the surprising variety

phenomena it allows, it will be helpful to consider some
important examples. The simplest one consists of just
two call points coinciding precisely with their associated
reveal points, and in the forward light cone of a qubit [22]
in the state |'i at the starting point. If the two call points
are not spacelike to each other, then the qubit can sim-
ply be transmitted to each call point in turn. On the
other hand, Kent observed that if the two call points are
spacelike to each other, the impossibility of superluminal
signalling implies that being able to successfully summon
|'i would amount to being able to send |'i to both the
reveal points, which is a clear violation of the no-cloning
principle. Despite its simplicity, this no-summoning theo-
rem has significant consequences for information process-
ing. In the same way that the no-cloning theorem gives
rise to secret key distribution protocols secured by the
laws of quantum mechanics, the no-summoning theorem
gives rise to secure bit commitment protocols secured by
a combination of quantum mechanics and relativity [8].
Secure bit commitment is impossible using quantum me-
chanics alone [9, 10].

Another simple example in 1+1 dimensions is shown in
Figure 2. Even though there is no causal curve through
each of the reveal points, it is still possible to complete
the summoning task. The example illustrates that if
there is a causal curve passing through each of the causal
diamonds, then summoning will be possible.
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FIG. 3: Exploiting quantum error correction. One share of a
((2, 3)) threshold quantum secret sharing scheme is allocated
to each of the call points yj . Meanwhile, each reveal point zj
is lightlike to both yj and yj+1mod 3

. (The vertical direction
is time. The arrows are causal, in this case lightlike, curves.)
If the participants follow the protocol described in the text,
then the correct reveal point will receive enough shares to
reconstruct the secret.

When more spatial dimensions are introduced, delocal-
ization becomes crucial in understanding which configu-
rations of causal diamonds are compatible. For an repre-
sentative example, place three call points at time zero on
the vertices of an equilateral triangle with edge lengths `.
Place the reveal points at time `/(2c) on the midpoints
of the edges, for c the speed of light. Because the call-
reveal pairs are lightlike, the diamonds Di are just line
segments, as shown in Figure 3. There is no causal curve
through the diamonds Di, so the strategy of simply mov-
ing the qubit around won’t work. Delocalizing the qubit
through the use of quantum error correcting codes will,
however. It is possible to encode the quantum state |'i
into a tripartite Hilbert space H

1

⌦H
2

⌦H
3

such that the
qubit can be recovered even if any one of the correspond-
ing three quantum subsystems is lost. This is known as a
((2, 3)) threshold quantum secret sharing scheme because
the quantum information can be recovered from any two
of the three subsystems even though no information at
all can be recovered from fewer than two [11]. This en-
coding is performed at the start point s and then one
share is forwarded to each of the call points. For each j,
if the request is made at yj , then that share is forwarded
to zj . Otherwise, that share is forwarded to zj�1mod 3

.
By this arrangement the correct reveal point will receive
two out the three shares as required to recover the state.
The example reveals one interesting way to delocalize

a quantum state. To address the full variety of ways in
which quantum information can be distributed in space-
time, the following theorem characterizes every summon-
ing task in Minkowski space as possible or impossible.

Theorem 1 Summoning is possible if and only if the fol-

lowing conditions hold:

1. Every reveal point is in the future light cone of the

|'i
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ple, a simple strategy will work even though z
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is not in the
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. The quantum state is first transported
along the arrow to P . The call information originating at y

0

is
broadcast into its future light cone and accessed at the point
P . If the call is for z

0

, the quantum state is moved there. If
not, it is moved to z
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be a↵ected by a request at yj and a↵ect the outcome
at zj . A qubit can be summoned to zj from yj if and
only if the qubit is localized in the causal diamond Dj .
Therefore, the summoning task is possible if and only if
the qubit is localized to each and every one of the causal
diamonds {D

1

, D
2

, . . . , Dn�1

}.
To understand the definition and the surprising variety

phenomena it allows, it will be helpful to consider some
important examples. The simplest one consists of just
two call points coinciding precisely with their associated
reveal points, and in the forward light cone of a qubit [22]
in the state |'i at the starting point. If the two call points
are not spacelike to each other, then the qubit can sim-
ply be transmitted to each call point in turn. On the
other hand, Kent observed that if the two call points are
spacelike to each other, the impossibility of superluminal
signalling implies that being able to successfully summon
|'i would amount to being able to send |'i to both the
reveal points, which is a clear violation of the no-cloning
principle. Despite its simplicity, this no-summoning theo-
rem has significant consequences for information process-
ing. In the same way that the no-cloning theorem gives
rise to secret key distribution protocols secured by the
laws of quantum mechanics, the no-summoning theorem
gives rise to secure bit commitment protocols secured by
a combination of quantum mechanics and relativity [8].
Secure bit commitment is impossible using quantum me-
chanics alone [9, 10].

Another simple example in 1+1 dimensions is shown in
Figure 2. Even though there is no causal curve through
each of the reveal points, it is still possible to complete
the summoning task. The example illustrates that if
there is a causal curve passing through each of the causal
diamonds, then summoning will be possible.
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FIG. 3: Exploiting quantum error correction. One share of a
((2, 3)) threshold quantum secret sharing scheme is allocated
to each of the call points yj . Meanwhile, each reveal point zj
is lightlike to both yj and yj+1mod 3

. (The vertical direction
is time. The arrows are causal, in this case lightlike, curves.)
If the participants follow the protocol described in the text,
then the correct reveal point will receive enough shares to
reconstruct the secret.

When more spatial dimensions are introduced, delocal-
ization becomes crucial in understanding which configu-
rations of causal diamonds are compatible. For an repre-
sentative example, place three call points at time zero on
the vertices of an equilateral triangle with edge lengths `.
Place the reveal points at time `/(2c) on the midpoints
of the edges, for c the speed of light. Because the call-
reveal pairs are lightlike, the diamonds Di are just line
segments, as shown in Figure 3. There is no causal curve
through the diamonds Di, so the strategy of simply mov-
ing the qubit around won’t work. Delocalizing the qubit
through the use of quantum error correcting codes will,
however. It is possible to encode the quantum state |'i
into a tripartite Hilbert space H

1

⌦H
2

⌦H
3

such that the
qubit can be recovered even if any one of the correspond-
ing three quantum subsystems is lost. This is known as a
((2, 3)) threshold quantum secret sharing scheme because
the quantum information can be recovered from any two
of the three subsystems even though no information at
all can be recovered from fewer than two [11]. This en-
coding is performed at the start point s and then one
share is forwarded to each of the call points. For each j,
if the request is made at yj , then that share is forwarded
to zj . Otherwise, that share is forwarded to zj�1mod 3

.
By this arrangement the correct reveal point will receive
two out the three shares as required to recover the state.
The example reveals one interesting way to delocalize

a quantum state. To address the full variety of ways in
which quantum information can be distributed in space-
time, the following theorem characterizes every summon-
ing task in Minkowski space as possible or impossible.

Theorem 1 Summoning is possible if and only if the fol-

lowing conditions hold:

1. Every reveal point is in the future light cone of the

Summoning	  as	  replication	  

x	  

t	  

Summoning	  is	  possible	  iff	  z1	  is	  in	  the	  future	  of	  y0	  or	  z0	  is	  in	  the	  future	  of	  y1.	  

Summoning	  is	  possible	  iff	  the	  causal	  diamonds	  D0	  and	  D1	  are	  causally	  related:	  	  
there	  exists	  a	  causal	  curve	  from	  D0	  to	  D1	  or	  vice-‐versa.	  

Summoning	  provides	  an	  operational	  
definition	  of	  what	  it	  means	  for	  quantum	  
information	  to	  be	  localized	  in	  the	  diamond	  Dj.	  

D0

D1
Define	  causal	  diamond	  Dj	  to	  be	  the	  	  
intersection	  of	  the	  future	  of	  yj	  and	  the	  	  
past	  of	  zj.	  

Dj	  consists	  of	  the	  points	  that	  can	  both	  be	  	  
affected	  by	  the	  request	  at	  yj	  and	  can	  	  
affect	  the	  outcome	  at	  zj.	  



Causal	  diamond	  geometry	  

Sphere	   Sphere	  

Observer	  
Inside	  a	  causal	  diamond,	  quantum	  	  
mechanical	  time	  evolution	  is	  unitary	  

If	  φ	  is	  present	  on	  one	  spacelike	  slice,	  it	  
is	  present	  on	  all	  of	  them	  



Causal	  diamond	  geometry	  

Diamond	  becomes	  a	  line	  segment	  when	  
top	  and	  bottom	  are	  lightlike	  separated:	  
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FIG. 2: A summoning task in 1+1 dimensions. In this exam-
ple, a simple strategy will work even though z
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is not in the
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. The quantum state is first transported
along the arrow to P . The call information originating at y
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is
broadcast into its future light cone and accessed at the point
P . If the call is for z
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, the quantum state is moved there. If
not, it is moved to z
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be a↵ected by a request at yj and a↵ect the outcome
at zj . A qubit can be summoned to zj from yj if and
only if the qubit is localized in the causal diamond Dj .
Therefore, the summoning task is possible if and only if
the qubit is localized to each and every one of the causal
diamonds {D

1

, D
2

, . . . , Dn�1

}.
To understand the definition and the surprising variety

phenomena it allows, it will be helpful to consider some
important examples. The simplest one consists of just
two call points coinciding precisely with their associated
reveal points, and in the forward light cone of a qubit [22]
in the state |'i at the starting point. If the two call points
are not spacelike to each other, then the qubit can sim-
ply be transmitted to each call point in turn. On the
other hand, Kent observed that if the two call points are
spacelike to each other, the impossibility of superluminal
signalling implies that being able to successfully summon
|'i would amount to being able to send |'i to both the
reveal points, which is a clear violation of the no-cloning
principle. Despite its simplicity, this no-summoning theo-
rem has significant consequences for information process-
ing. In the same way that the no-cloning theorem gives
rise to secret key distribution protocols secured by the
laws of quantum mechanics, the no-summoning theorem
gives rise to secure bit commitment protocols secured by
a combination of quantum mechanics and relativity [8].
Secure bit commitment is impossible using quantum me-
chanics alone [9, 10].

Another simple example in 1+1 dimensions is shown in
Figure 2. Even though there is no causal curve through
each of the reveal points, it is still possible to complete
the summoning task. The example illustrates that if
there is a causal curve passing through each of the causal
diamonds, then summoning will be possible.
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FIG. 3: Exploiting quantum error correction. One share of a
((2, 3)) threshold quantum secret sharing scheme is allocated
to each of the call points yj . Meanwhile, each reveal point zj
is lightlike to both yj and yj+1mod 3

. (The vertical direction
is time. The arrows are causal, in this case lightlike, curves.)
If the participants follow the protocol described in the text,
then the correct reveal point will receive enough shares to
reconstruct the secret.

When more spatial dimensions are introduced, delocal-
ization becomes crucial in understanding which configu-
rations of causal diamonds are compatible. For an repre-
sentative example, place three call points at time zero on
the vertices of an equilateral triangle with edge lengths `.
Place the reveal points at time `/(2c) on the midpoints
of the edges, for c the speed of light. Because the call-
reveal pairs are lightlike, the diamonds Di are just line
segments, as shown in Figure 3. There is no causal curve
through the diamonds Di, so the strategy of simply mov-
ing the qubit around won’t work. Delocalizing the qubit
through the use of quantum error correcting codes will,
however. It is possible to encode the quantum state |'i
into a tripartite Hilbert space H

1

⌦H
2

⌦H
3

such that the
qubit can be recovered even if any one of the correspond-
ing three quantum subsystems is lost. This is known as a
((2, 3)) threshold quantum secret sharing scheme because
the quantum information can be recovered from any two
of the three subsystems even though no information at
all can be recovered from fewer than two [11]. This en-
coding is performed at the start point s and then one
share is forwarded to each of the call points. For each j,
if the request is made at yj , then that share is forwarded
to zj . Otherwise, that share is forwarded to zj�1mod 3

.
By this arrangement the correct reveal point will receive
two out the three shares as required to recover the state.
The example reveals one interesting way to delocalize

a quantum state. To address the full variety of ways in
which quantum information can be distributed in space-
time, the following theorem characterizes every summon-
ing task in Minkowski space as possible or impossible.

Theorem 1 Summoning is possible if and only if the fol-

lowing conditions hold:

1. Every reveal point is in the future light cone of the

φ	  is	  encoded	  into	  	  ((2,3))	  threshold	  	  
quantum	  error	  correcting	  code	  at	  s	  

One	  particle	  sent	  to	  each	  of	  yj	  

Each	  particle	  is	  then	  sent	  at	  the	  
speed	  of	  light	  along	  a	  red	  ray	  

2	  particles	  pass	  through	  each	  causal	  	  
diamond	  yjzj	  	  

The	  same	  quantum	  information	  is	  	  
replicated	  in	  each	  causal	  diamond	  

Summoning	  language:	  if	  a	  request	  is	  made	  at	  yj	  then	  
	  the	  share	  at	  yj	  is	  sent	  to	  zj	  instead	  of	  to	  zj-‐1	  

|'i
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FIG. 6: a) This configuration of four call-reveal spacetime
points satisfies the conditions of Theorem 1 and requires a
combination of error correction and teleportation for success-
ful summoning. Each reveal point is again lightlike to its
call point and zj is causal to the call point yj�1mod 4

. In
addition, z

0

is lightlike to y
2

and z
3

is lightlike to y
1

. b)
The graph G of causal relationships used to construct the
summoning protocol. The subproblem involving the cycle
D

0

! D
2

! D
3

! D
0

is structurally equivalent to the ex-
ample illustrated in Figure 3, although the recursive protocol
replaces direct quantum communication by teleportation. c)
The code used in the e�cient construction has one physical
qubit for each edge of this graph, G0. The arcs label the four
sets of doubled edges su�cient to reconstruct the state. In the
protocol, if there is a request at y

0

, for example, the qubits
on the solid edges are sent to z

0

.

the proof of Theorem 1 is unfortunately ine�cient, using
⌦(n!) qubits. Practicality aside, such dramatic growth
quickly runs afoul of the holographic bound, which places
a limit of roughly 1.4 ⇥ 1069 bits per m2 [1]: trying to
store the protocol’s qubits in a region centred at s of
area of 1 m2 would already create a black hole for n =
55. Understanding summoning in the presence of gravity
therefore requires finding more e�cient protocols.

The high cost is incurred from the recursive encoding
preceding teleportation, so we will show how to achieve
the same functionality directly. To begin, it will be help-
ful to characterize that functionality. The recursive en-
coding produces a quantum error correcting code with
shares associated to the edges of the graph G. Should
the call arrive at yj , teleportation is used to ensure that
all shares associated to the edges incident to Dj arrive
at the reveal point zj . The functionality required of the
code is therefore clear: it must be possible to recover the
encoded quantum state using only those shares received
at zj . That is, the erasure of shares for any combination
of edges leaving at least one vertex untouched must be
recoverable, as illustrated in Figure 5c.

That describes an unusual quantum error correcting
code. Ignoring directionality, G is the complete graph,
so each vertex is incident to exactly n�1 edges. The total
number of edges is

�n
2

�
, however, so the quantum state

must be recoverable from a vanishing fraction 2/n of the
total number of shares, albeit a specially chosen vanishing

s

FIG. 7: A summoning task defined by sequences of call-reveal
pairs; the three possible sequences are indicated by dashed
arrows through the reveal points.

fraction that prevents violations of the no-cloning prin-
ciple. A particular codeword-stabilized (CWS) quantum
code [12] will do the job very e�ciently. LetG0 = (V 0, E0)
be an undirected version of G with a new vertex placed
on each edge, so that V 0 = V [E and E0 = {(v, (v, w)) :
(v, w) 2 E or (w, v) 2 E}. The code will consist of a sin-
gle qubit for each of the edges of G0. For each such edge
e, let Ne = {f 2 E0 : f \ e 6= ; and f 6= e} be the set of
edges adjacent to e and define Se = Xe

Q
f2Ne

Zf , where
Xe and Ze are Pauli operators acting on edge e. The
encoded qubit is simply the span of the simultaneous +1
eigenstate of all the Se operators and the simultaneous
�1 eigenstate.
As demonstrated in Appendix B, this code has pre-

cisely the desired properties if the share for each edge
e 2 E of the original graph G is identified with the pair
of edges replacing e in G0. The construction therefore
yields a method for solving the summoning task using
exactly n(n � 1) physical qubits per summoned qubit.
The CWS code also happens to be a stabilizer code, so
the erasure errors can be decoded in polynomial time [4].
Generalizations— The summoning tasks character-

ized by Theorem 1 only require that it be possible to
respond to a request at a single call point. That version
of the problem is the one most relevant to understanding
how information can be distributed through spacetime.
From an active information processing perspective, how-
ever, it is natural to permit requests at sequences of call
points rather than just one. These sequential summon-
ing tasks will be specified by a set {ȳ

0

, ȳ
1

, ..., ȳn�1

} of
possible sequences of call points and a corresponding set
{z̄

0

, z̄
1

, ..., z̄n�1

} of sequences of reveal points. Any se-
quence of requests ȳj must be met by revealing the state
at each of the paired reveal points. A typical problem is
illustrated in Figure 7.
The characterization of which sequential summoning

tasks are possible reduces easily to Theorem 1. It is
clearly necessary that there be a causal curve through
each set of reveal points z̄j . If not, then there would
be a sequence containing two spacelike separated re-

Hrmm…Maybe?	  
All	  diamonds	  are	  
causally	  related	  

Yes!	  Each	  and	  every	  diamond	  can	  contain	  the	  same	  
quantum	  information	  iff	  every	  pair	  is	  causally	  related	  

Equivalently:	  iff	  there	  is	  no	  obvious	  violation	  of	  causality	  or	  no-‐cloning	  

3

starting point s.

2. For each pair (i, j), the diamonds Di and Dj are

causally related, meaning that there exists a causal

curve from Di to Dj or vice versa.

The two conditions are necessary because they encode
the most basic constraints coming from relativity and
quantum mechanics, namely causality and the impossi-
bility of cloning. Indeed, Condition 1 is manifestly the
prohibition of superluminal communication. Condition
2 arises from reasoning similar to Kent’s treatment of
“non-ideal” summoning [6]. Suppose we have a success-
ful summoning protocol for which Condition 2 is violated,
meaning that two diamonds Di and Dj are spacelike sep-
arated as in Figure 1. If the call is received at yi, there is
a procedure that will reveal the state at zi. Now imagine
that the call machinery malfunctions such that it makes
a call at yj in addition to the one at yi. Because yj is not
in the causal past of zi, the malfunction cannot prevent
the state from being revealed at zi. Likewise, because yi
is not in the causal past of zj , the call at yj will result in
the state successfully being revealed at zj . This proce-
dure therefore reveals the state |'i at the two spacelike
points zi and zj starting from a single copy of |'i at
the point s. In other words, a summoning protocol for a
configuration violating Condition 2 is easily modified to
make a cloning machine, which is impossible.

To see that Conditions 1 and 2 are su�cient will re-
quire constructing a protocol that will succeed at the
summoning task given a starting point and n call-reveal
pairs satisfying the conditions. The structure of the pro-
tocol will only depend on the directed graph G = (V,E)
whose vertices are labelled by the diamondsDi and which
contains the edge (Di, Dj) if and only if there is a causal
curve from some point in Di to one in Dj .

It is possible to handle the n = 2 case by making use
of a strategy from [7]. Without loss of generality, assume
there is a causal curve from D

0

to D
1

. Begin by dis-
tributing a Bell pair between the spatial locations of the
start point and y

0

. Upon receiving the quantum state
at the start point, immediately teleport it over the Bell
pair [5], sending the classical teleportation data to both
z
0

and z
1

. Meanwhile, if the call is received at y
0

, for-
ward the other half of the Bell pair to z

0

, but if no call is
received, forward it to z

1

. Because there is a causal curve
from the start point to both z

0

and z
1

, and because there
is a causal curve from D

0

and D
1

(which, in particular,
guarantees there is a causal curve from y

0

to z
1

), both
the classical data and the half of the Bell pair required
to reconstruct the quantum state will arrive at the ap-
propriate reveal point. Figure 4 depicts an example in
which this protocol succeeds but the simpler strategy of
carrying the qubit through the causal diamonds fails.

Using quantum error correction, a protocol for gen-
eral n can be built recursively from the protocol for
n = 2. Encode the state |'i at the starting point s
in an ((n � 1, n)) threshold secret sharing scheme [11].
There are n subsets of {D

1

, D
2

, . . . , Dn} of size n � 1.
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FIG. 4: The general strategy for completing two-request tasks
can be used to complete this example, even though y

0

and y
1

are outside the light cone of s. The essence of teleportation
is that it splits a qubit into entanglement and classical data
transmission, thereby making it possible to delocalize quan-
tum information in a curious way: classical data can be trans-
mitted to several recipients without regard to the no-cloning
theorem while entanglement reaches outside the light cone.
Both features are crucial in this example.
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FIG. 5: a) This configuration of four call-reveal spacetime
points satisfies the conditions of Theorem 1 and requires a
combination of error correction and teleportation for success-
ful summoning. Each reveal point is again lightlike to its
call point and zj is causal to the call point yj�1mod 4

. In
addition, z

0

is lightlike to y
2

and z
3

is lightlike to y
1

. b)
The graph G of causal relationships used to construct the
summoning protocol. The subproblem involving the cycle
D

0

! D
2

! D
3

! D
0

is structurally equivalent to the ex-
ample illustrated in Figure 3, although the recursive protocol
replaces direct quantum communication by teleportation. c)
The code used in the e�cient construction has one physical
qubit for each edge of this graph, G0. The arcs label the four
sets of doubled edges su�cient to reconstruct the state. In the
protocol, if there is a request at y

0

, for example, the qubits
on the solid edges are sent to z

0

.

Assign one of the n shares to each of the subsets and for
each subset recursively execute the protocol, now on the
smaller subset of size n � 1. If the request is made at
call point yj , then for each of the subsets containing Dj ,
the corresponding protocol will forward its share of the
secret to zj . Precisely n� 1 of the n subsets contain Dj ,
so the state |'i will be recoverable at zj , as required. An
example for n = 4 is sketched in Figures 5a and 5b.
E�cient construction— The protocol described in
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FIG. 2: A summoning task in 1+1 dimensions. In this exam-
ple, a simple strategy will work even though z

1

is not in the
future light cone of z

0

. The quantum state is first transported
along the arrow to P . The call information originating at y

0

is
broadcast into its future light cone and accessed at the point
P . If the call is for z

0

, the quantum state is moved there. If
not, it is moved to z

1

.

be a↵ected by a request at yj and a↵ect the outcome
at zj . A qubit can be summoned to zj from yj if and
only if the qubit is localized in the causal diamond Dj .
Therefore, the summoning task is possible if and only if
the qubit is localized to each and every one of the causal
diamonds {D

1

, D
2

, . . . , Dn�1

}.
To understand the definition and the surprising variety

phenomena it allows, it will be helpful to consider some
important examples. The simplest one consists of just
two call points coinciding precisely with their associated
reveal points, and in the forward light cone of a qubit [22]
in the state |'i at the starting point. If the two call points
are not spacelike to each other, then the qubit can sim-
ply be transmitted to each call point in turn. On the
other hand, Kent observed that if the two call points are
spacelike to each other, the impossibility of superluminal
signalling implies that being able to successfully summon
|'i would amount to being able to send |'i to both the
reveal points, which is a clear violation of the no-cloning
principle. Despite its simplicity, this no-summoning theo-
rem has significant consequences for information process-
ing. In the same way that the no-cloning theorem gives
rise to secret key distribution protocols secured by the
laws of quantum mechanics, the no-summoning theorem
gives rise to secure bit commitment protocols secured by
a combination of quantum mechanics and relativity [8].
Secure bit commitment is impossible using quantum me-
chanics alone [9, 10].

Another simple example in 1+1 dimensions is shown in
Figure 2. Even though there is no causal curve through
each of the reveal points, it is still possible to complete
the summoning task. The example illustrates that if
there is a causal curve passing through each of the causal
diamonds, then summoning will be possible.
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FIG. 3: Exploiting quantum error correction. One share of a
((2, 3)) threshold quantum secret sharing scheme is allocated
to each of the call points yj . Meanwhile, each reveal point zj
is lightlike to both yj and yj+1mod 3

. (The vertical direction
is time. The arrows are causal, in this case lightlike, curves.)
If the participants follow the protocol described in the text,
then the correct reveal point will receive enough shares to
reconstruct the secret.

When more spatial dimensions are introduced, delocal-
ization becomes crucial in understanding which configu-
rations of causal diamonds are compatible. For an repre-
sentative example, place three call points at time zero on
the vertices of an equilateral triangle with edge lengths `.
Place the reveal points at time `/(2c) on the midpoints
of the edges, for c the speed of light. Because the call-
reveal pairs are lightlike, the diamonds Di are just line
segments, as shown in Figure 3. There is no causal curve
through the diamonds Di, so the strategy of simply mov-
ing the qubit around won’t work. Delocalizing the qubit
through the use of quantum error correcting codes will,
however. It is possible to encode the quantum state |'i
into a tripartite Hilbert space H

1

⌦H
2

⌦H
3

such that the
qubit can be recovered even if any one of the correspond-
ing three quantum subsystems is lost. This is known as a
((2, 3)) threshold quantum secret sharing scheme because
the quantum information can be recovered from any two
of the three subsystems even though no information at
all can be recovered from fewer than two [11]. This en-
coding is performed at the start point s and then one
share is forwarded to each of the call points. For each j,
if the request is made at yj , then that share is forwarded
to zj . Otherwise, that share is forwarded to zj�1mod 3

.
By this arrangement the correct reveal point will receive
two out the three shares as required to recover the state.
The example reveals one interesting way to delocalize

a quantum state. To address the full variety of ways in
which quantum information can be distributed in space-
time, the following theorem characterizes every summon-
ing task in Minkowski space as possible or impossible.

Theorem 1 Summoning is possible if and only if the fol-

lowing conditions hold:

1. Every reveal point is in the future light cone of the

Can	  the	  same	  quantum	  	  
info	  be	  replicated	  in	  all	  	  
four	  diamonds?	  



Information	  replication:	  general	  case	  

Each	  and	  every	  causal	  diamond	  can	  contain	  the	  same	  quantum	  information	  
if	  and	  only	  if	  every	  pair	  is	  causally	  related.	  

Proof:	   	  For	  n=2,	  the	  teleportation	  procedure	  works	  for	  any	  pair	  of	  diamonds	  

Encode	  φ	  into	  an	  ((n-‐1,n))	  threshold	  quantum	  code.	  

There	  are	  n	  subsets	  of	  {D0,D1,…,Dn-‐1}	  of	  size	  n-‐1.	  

Associate	  one	  “particle”	  to	  each	  such	  subset	  and	  for	  each	  subset	  execute	  	  
the	  protocol	  recursively	  with	  one	  diamond	  removed.	  

Assume	  the	  existence	  of	  a	  procedure	  for	  sets	  of	  n-‐1	  diamonds.	  
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starting point s.

2. For each pair (i, j), the diamonds Di and Dj are

causally related, meaning that there exists a causal

curve from Di to Dj or vice versa.

The two conditions are necessary because they encode
the most basic constraints coming from relativity and
quantum mechanics, namely causality and the impossi-
bility of cloning. Indeed, Condition 1 is manifestly the
prohibition of superluminal communication. Condition
2 arises from reasoning similar to Kent’s treatment of
“non-ideal” summoning [6]. Suppose we have a success-
ful summoning protocol for which Condition 2 is violated,
meaning that two diamonds Di and Dj are spacelike sep-
arated as in Figure 1. If the call is received at yi, there is
a procedure that will reveal the state at zi. Now imagine
that the call machinery malfunctions such that it makes
a call at yj in addition to the one at yi. Because yj is not
in the causal past of zi, the malfunction cannot prevent
the state from being revealed at zi. Likewise, because yi
is not in the causal past of zj , the call at yj will result in
the state successfully being revealed at zj . This proce-
dure therefore reveals the state |'i at the two spacelike
points zi and zj starting from a single copy of |'i at
the point s. In other words, a summoning protocol for a
configuration violating Condition 2 is easily modified to
make a cloning machine, which is impossible.

To see that Conditions 1 and 2 are su�cient will re-
quire constructing a protocol that will succeed at the
summoning task given a starting point and n call-reveal
pairs satisfying the conditions. The structure of the pro-
tocol will only depend on the directed graph G = (V,E)
whose vertices are labelled by the diamondsDi and which
contains the edge (Di, Dj) if and only if there is a causal
curve from some point in Di to one in Dj .

It is possible to handle the n = 2 case by making use
of a strategy from [7]. Without loss of generality, assume
there is a causal curve from D

0

to D
1

. Begin by dis-
tributing a Bell pair between the spatial locations of the
start point and y

0

. Upon receiving the quantum state
at the start point, immediately teleport it over the Bell
pair [5], sending the classical teleportation data to both
z
0

and z
1

. Meanwhile, if the call is received at y
0

, for-
ward the other half of the Bell pair to z

0

, but if no call is
received, forward it to z

1

. Because there is a causal curve
from the start point to both z

0

and z
1

, and because there
is a causal curve from D

0

and D
1

(which, in particular,
guarantees there is a causal curve from y

0

to z
1

), both
the classical data and the half of the Bell pair required
to reconstruct the quantum state will arrive at the ap-
propriate reveal point. Figure 4 depicts an example in
which this protocol succeeds but the simpler strategy of
carrying the qubit through the causal diamonds fails.

Using quantum error correction, a protocol for gen-
eral n can be built recursively from the protocol for
n = 2. Encode the state |'i at the starting point s
in an ((n � 1, n)) threshold secret sharing scheme [11].
There are n subsets of {D

1

, D
2

, . . . , Dn} of size n � 1.
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FIG. 4: The general strategy for completing two-request tasks
can be used to complete this example, even though y

0

and y
1

are outside the light cone of s. The essence of teleportation
is that it splits a qubit into entanglement and classical data
transmission, thereby making it possible to delocalize quan-
tum information in a curious way: classical data can be trans-
mitted to several recipients without regard to the no-cloning
theorem while entanglement reaches outside the light cone.
Both features are crucial in this example.
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FIG. 5: a) This configuration of four call-reveal spacetime
points satisfies the conditions of Theorem 1 and requires a
combination of error correction and teleportation for success-
ful summoning. Each reveal point is again lightlike to its
call point and zj is causal to the call point yj�1mod 4

. In
addition, z

0

is lightlike to y
2

and z
3

is lightlike to y
1

. b)
The graph G of causal relationships used to construct the
summoning protocol. The subproblem involving the cycle
D

0

! D
2

! D
3

! D
0

is structurally equivalent to the ex-
ample illustrated in Figure 3, although the recursive protocol
replaces direct quantum communication by teleportation. c)
The code used in the e�cient construction has one physical
qubit for each edge of this graph, G0. The arcs label the four
sets of doubled edges su�cient to reconstruct the state. In the
protocol, if there is a request at y

0

, for example, the qubits
on the solid edges are sent to z

0

.

Assign one of the n shares to each of the subsets and for
each subset recursively execute the protocol, now on the
smaller subset of size n � 1. If the request is made at
call point yj , then for each of the subsets containing Dj ,
the corresponding protocol will forward its share of the
secret to zj . Precisely n� 1 of the n subsets contain Dj ,
so the state |'i will be recoverable at zj , as required. An
example for n = 4 is sketched in Figures 5a and 5b.
E�cient construction— The protocol described in
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starting point s.

2. For each pair (i, j), the diamonds Di and Dj are

causally related, meaning that there exists a causal

curve from Di to Dj or vice versa.

The two conditions are necessary because they encode
the most basic constraints coming from relativity and
quantum mechanics, namely causality and the impossi-
bility of cloning. Indeed, Condition 1 is manifestly the
prohibition of superluminal communication. Condition
2 arises from reasoning similar to Kent’s treatment of
“non-ideal” summoning [6]. Suppose we have a success-
ful summoning protocol for which Condition 2 is violated,
meaning that two diamonds Di and Dj are spacelike sep-
arated as in Figure 1. If the call is received at yi, there is
a procedure that will reveal the state at zi. Now imagine
that the call machinery malfunctions such that it makes
a call at yj in addition to the one at yi. Because yj is not
in the causal past of zi, the malfunction cannot prevent
the state from being revealed at zi. Likewise, because yi
is not in the causal past of zj , the call at yj will result in
the state successfully being revealed at zj . This proce-
dure therefore reveals the state |'i at the two spacelike
points zi and zj starting from a single copy of |'i at
the point s. In other words, a summoning protocol for a
configuration violating Condition 2 is easily modified to
make a cloning machine, which is impossible.

To see that Conditions 1 and 2 are su�cient will re-
quire constructing a protocol that will succeed at the
summoning task given a starting point and n call-reveal
pairs satisfying the conditions. The structure of the pro-
tocol will only depend on the directed graph G = (V,E)
whose vertices are labelled by the diamondsDi and which
contains the edge (Di, Dj) if and only if there is a causal
curve from some point in Di to one in Dj .

It is possible to handle the n = 2 case by making use
of a strategy from [7]. Without loss of generality, assume
there is a causal curve from D

0

to D
1

. Begin by dis-
tributing a Bell pair between the spatial locations of the
start point and y

0

. Upon receiving the quantum state
at the start point, immediately teleport it over the Bell
pair [5], sending the classical teleportation data to both
z
0

and z
1

. Meanwhile, if the call is received at y
0

, for-
ward the other half of the Bell pair to z

0

, but if no call is
received, forward it to z

1

. Because there is a causal curve
from the start point to both z

0

and z
1

, and because there
is a causal curve from D

0

and D
1

(which, in particular,
guarantees there is a causal curve from y

0

to z
1

), both
the classical data and the half of the Bell pair required
to reconstruct the quantum state will arrive at the ap-
propriate reveal point. Figure 4 depicts an example in
which this protocol succeeds but the simpler strategy of
carrying the qubit through the causal diamonds fails.

Using quantum error correction, a protocol for gen-
eral n can be built recursively from the protocol for
n = 2. Encode the state |'i at the starting point s
in an ((n � 1, n)) threshold secret sharing scheme [11].
There are n subsets of {D

1

, D
2

, . . . , Dn} of size n � 1.
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FIG. 4: The general strategy for completing two-request tasks
can be used to complete this example, even though y

0

and y
1

are outside the light cone of s. The essence of teleportation
is that it splits a qubit into entanglement and classical data
transmission, thereby making it possible to delocalize quan-
tum information in a curious way: classical data can be trans-
mitted to several recipients without regard to the no-cloning
theorem while entanglement reaches outside the light cone.
Both features are crucial in this example.

a)

y
3

y
2

y
1

y
0

z
3

z
2z

1

z
0

s

b)

c)

D
0

D
1

D
2

D
3

D
0

D
1

D
2

D
3

FIG. 5: a) This configuration of four call-reveal spacetime
points satisfies the conditions of Theorem 1 and requires a
combination of error correction and teleportation for success-
ful summoning. Each reveal point is again lightlike to its
call point and zj is causal to the call point yj�1mod 4

. In
addition, z

0

is lightlike to y
2

and z
3

is lightlike to y
1

. b)
The graph G of causal relationships used to construct the
summoning protocol. The subproblem involving the cycle
D

0

! D
2

! D
3

! D
0

is structurally equivalent to the ex-
ample illustrated in Figure 3, although the recursive protocol
replaces direct quantum communication by teleportation. c)
The code used in the e�cient construction has one physical
qubit for each edge of this graph, G0. The arcs label the four
sets of doubled edges su�cient to reconstruct the state. In the
protocol, if there is a request at y

0

, for example, the qubits
on the solid edges are sent to z

0

.

Assign one of the n shares to each of the subsets and for
each subset recursively execute the protocol, now on the
smaller subset of size n � 1. If the request is made at
call point yj , then for each of the subsets containing Dj ,
the corresponding protocol will forward its share of the
secret to zj . Precisely n� 1 of the n subsets contain Dj ,
so the state |'i will be recoverable at zj , as required. An
example for n = 4 is sketched in Figures 5a and 5b.
E�cient construction— The protocol described in

3

starting point s.

2. For each pair (i, j), the diamonds Di and Dj are

causally related, meaning that there exists a causal

curve from Di to Dj or vice versa.

The two conditions are necessary because they encode
the most basic constraints coming from relativity and
quantum mechanics, namely causality and the impossi-
bility of cloning. Indeed, Condition 1 is manifestly the
prohibition of superluminal communication. Condition
2 arises from reasoning similar to Kent’s treatment of
“non-ideal” summoning [6]. Suppose we have a success-
ful summoning protocol for which Condition 2 is violated,
meaning that two diamonds Di and Dj are spacelike sep-
arated as in Figure 1. If the call is received at yi, there is
a procedure that will reveal the state at zi. Now imagine
that the call machinery malfunctions such that it makes
a call at yj in addition to the one at yi. Because yj is not
in the causal past of zi, the malfunction cannot prevent
the state from being revealed at zi. Likewise, because yi
is not in the causal past of zj , the call at yj will result in
the state successfully being revealed at zj . This proce-
dure therefore reveals the state |'i at the two spacelike
points zi and zj starting from a single copy of |'i at
the point s. In other words, a summoning protocol for a
configuration violating Condition 2 is easily modified to
make a cloning machine, which is impossible.

To see that Conditions 1 and 2 are su�cient will re-
quire constructing a protocol that will succeed at the
summoning task given a starting point and n call-reveal
pairs satisfying the conditions. The structure of the pro-
tocol will only depend on the directed graph G = (V,E)
whose vertices are labelled by the diamondsDi and which
contains the edge (Di, Dj) if and only if there is a causal
curve from some point in Di to one in Dj .

It is possible to handle the n = 2 case by making use
of a strategy from [7]. Without loss of generality, assume
there is a causal curve from D

0

to D
1

. Begin by dis-
tributing a Bell pair between the spatial locations of the
start point and y

0

. Upon receiving the quantum state
at the start point, immediately teleport it over the Bell
pair [5], sending the classical teleportation data to both
z
0

and z
1

. Meanwhile, if the call is received at y
0

, for-
ward the other half of the Bell pair to z

0

, but if no call is
received, forward it to z

1

. Because there is a causal curve
from the start point to both z

0

and z
1

, and because there
is a causal curve from D

0

and D
1

(which, in particular,
guarantees there is a causal curve from y

0

to z
1

), both
the classical data and the half of the Bell pair required
to reconstruct the quantum state will arrive at the ap-
propriate reveal point. Figure 4 depicts an example in
which this protocol succeeds but the simpler strategy of
carrying the qubit through the causal diamonds fails.

Using quantum error correction, a protocol for gen-
eral n can be built recursively from the protocol for
n = 2. Encode the state |'i at the starting point s
in an ((n � 1, n)) threshold secret sharing scheme [11].
There are n subsets of {D

1

, D
2

, . . . , Dn} of size n � 1.
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FIG. 4: The general strategy for completing two-request tasks
can be used to complete this example, even though y

0

and y
1

are outside the light cone of s. The essence of teleportation
is that it splits a qubit into entanglement and classical data
transmission, thereby making it possible to delocalize quan-
tum information in a curious way: classical data can be trans-
mitted to several recipients without regard to the no-cloning
theorem while entanglement reaches outside the light cone.
Both features are crucial in this example.
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FIG. 5: a) This configuration of four call-reveal spacetime
points satisfies the conditions of Theorem 1 and requires a
combination of error correction and teleportation for success-
ful summoning. Each reveal point is again lightlike to its
call point and zj is causal to the call point yj�1mod 4

. In
addition, z

0

is lightlike to y
2

and z
3

is lightlike to y
1

. b)
The graph G of causal relationships used to construct the
summoning protocol. The subproblem involving the cycle
D

0

! D
2

! D
3

! D
0

is structurally equivalent to the ex-
ample illustrated in Figure 3, although the recursive protocol
replaces direct quantum communication by teleportation. c)
The code used in the e�cient construction has one physical
qubit for each edge of this graph, G0. The arcs label the four
sets of doubled edges su�cient to reconstruct the state. In the
protocol, if there is a request at y

0

, for example, the qubits
on the solid edges are sent to z

0

.

Assign one of the n shares to each of the subsets and for
each subset recursively execute the protocol, now on the
smaller subset of size n � 1. If the request is made at
call point yj , then for each of the subsets containing Dj ,
the corresponding protocol will forward its share of the
secret to zj . Precisely n� 1 of the n subsets contain Dj ,
so the state |'i will be recoverable at zj , as required. An
example for n = 4 is sketched in Figures 5a and 5b.
E�cient construction— The protocol described in

G	  =	  (V,E)	  graph	  of	  	  
causal	  relaLonships:	  

Encode	  φ	  into	  a	  quantum	  error	  correcting	  code	  with	  one	  share	  for	  each	  edge.	  

Code	  property:	  φ	  can	  be	  recovered	  provided	  all	  the	  shares	  associated	  to	  any	  Dj	  

Execute	  the	  n=2	  teleportation	  protocol	  for	  each	  edge.	  

If	  request	  made	  at	  yj,	  then	  zj	  receives	  all	  shares	  associated	  to	  Dj	  and	  can	  recover	  φ.	  

Unusual	  QEC:	  ~n2	  qubits	  but	  recovery	  using	  n-‐1.	  Vanishing	  fraction	  O(1/n).	  



The	  quantum	  error	  correcting	  code	  
	  
Designed	  using	  the	  codeword-‐stabilized	  (CWS)	  quantum	  code	  formalism	  [CSSZ’08]	  
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starting point s.

2. For each pair (i, j), the diamonds Di and Dj are

causally related, meaning that there exists a causal

curve from Di to Dj or vice versa.

The two conditions are necessary because they encode
the most basic constraints coming from relativity and
quantum mechanics, namely causality and the impossi-
bility of cloning. Indeed, Condition 1 is manifestly the
prohibition of superluminal communication. Condition
2 arises from reasoning similar to Kent’s treatment of
“non-ideal” summoning [6]. Suppose we have a success-
ful summoning protocol for which Condition 2 is violated,
meaning that two diamonds Di and Dj are spacelike sep-
arated as in Figure 1. If the call is received at yi, there is
a procedure that will reveal the state at zi. Now imagine
that the call machinery malfunctions such that it makes
a call at yj in addition to the one at yi. Because yj is not
in the causal past of zi, the malfunction cannot prevent
the state from being revealed at zi. Likewise, because yi
is not in the causal past of zj , the call at yj will result in
the state successfully being revealed at zj . This proce-
dure therefore reveals the state |'i at the two spacelike
points zi and zj starting from a single copy of |'i at
the point s. In other words, a summoning protocol for a
configuration violating Condition 2 is easily modified to
make a cloning machine, which is impossible.

To see that Conditions 1 and 2 are su�cient will re-
quire constructing a protocol that will succeed at the
summoning task given a starting point and n call-reveal
pairs satisfying the conditions. The structure of the pro-
tocol will only depend on the directed graph G = (V,E)
whose vertices are labelled by the diamondsDi and which
contains the edge (Di, Dj) if and only if there is a causal
curve from some point in Di to one in Dj .

It is possible to handle the n = 2 case by making use
of a strategy from [7]. Without loss of generality, assume
there is a causal curve from D

0

to D
1

. Begin by dis-
tributing a Bell pair between the spatial locations of the
start point and y

0

. Upon receiving the quantum state
at the start point, immediately teleport it over the Bell
pair [5], sending the classical teleportation data to both
z
0

and z
1

. Meanwhile, if the call is received at y
0

, for-
ward the other half of the Bell pair to z

0

, but if no call is
received, forward it to z

1

. Because there is a causal curve
from the start point to both z

0

and z
1

, and because there
is a causal curve from D

0

and D
1

(which, in particular,
guarantees there is a causal curve from y

0

to z
1

), both
the classical data and the half of the Bell pair required
to reconstruct the quantum state will arrive at the ap-
propriate reveal point. Figure 4 depicts an example in
which this protocol succeeds but the simpler strategy of
carrying the qubit through the causal diamonds fails.

Using quantum error correction, a protocol for gen-
eral n can be built recursively from the protocol for
n = 2. Encode the state |'i at the starting point s
in an ((n � 1, n)) threshold secret sharing scheme [11].
There are n subsets of {D

1

, D
2

, . . . , Dn} of size n � 1.
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FIG. 4: The general strategy for completing two-request tasks
can be used to complete this example, even though y

0

and y
1

are outside the light cone of s. The essence of teleportation
is that it splits a qubit into entanglement and classical data
transmission, thereby making it possible to delocalize quan-
tum information in a curious way: classical data can be trans-
mitted to several recipients without regard to the no-cloning
theorem while entanglement reaches outside the light cone.
Both features are crucial in this example.
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FIG. 5: a) This configuration of four call-reveal spacetime
points satisfies the conditions of Theorem 1 and requires a
combination of error correction and teleportation for success-
ful summoning. Each reveal point is again lightlike to its
call point and zj is causal to the call point yj�1mod 4

. In
addition, z

0

is lightlike to y
2

and z
3

is lightlike to y
1

. b)
The graph G of causal relationships used to construct the
summoning protocol. The subproblem involving the cycle
D

0

! D
2

! D
3

! D
0

is structurally equivalent to the ex-
ample illustrated in Figure 3, although the recursive protocol
replaces direct quantum communication by teleportation. c)
The code used in the e�cient construction has one physical
qubit for each edge of this graph, G0. The arcs label the four
sets of doubled edges su�cient to reconstruct the state. In the
protocol, if there is a request at y

0

, for example, the qubits
on the solid edges are sent to z

0

.

Assign one of the n shares to each of the subsets and for
each subset recursively execute the protocol, now on the
smaller subset of size n � 1. If the request is made at
call point yj , then for each of the subsets containing Dj ,
the corresponding protocol will forward its share of the
secret to zj . Precisely n� 1 of the n subsets contain Dj ,
so the state |'i will be recoverable at zj , as required. An
example for n = 4 is sketched in Figures 5a and 5b.
E�cient construction— The protocol described in

Subdivide	  
every	  edge:	  

One	  qubit	  for	  each	  edge	  of	  G’:	  |E’|	  =	  n(n-‐1)	  

G’=(V’,E’)	  G	  =	  (V,E)	  	  

Se = Xe

Y

f2Ne

ZfDefine	  commuting	  operators	  

X	  

Z	  

Z	  

Z	  

Code	  subspace	  is	  the	  span	  of	  the	  simultaneous	  +1	  and	  -‐1	  eigenspaces	  of	  all	  Se.	  	  

Each	  share	  consists	  of	  the	  2	  qubits	  associated	  with	  each	  original	  edge	  of	  G.	  
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starting point s.

2. For each pair (i, j), the diamonds Di and Dj are

causally related, meaning that there exists a causal

curve from Di to Dj or vice versa.
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is not in the causal past of zj , the call at yj will result in
the state successfully being revealed at zj . This proce-
dure therefore reveals the state |'i at the two spacelike
points zi and zj starting from a single copy of |'i at
the point s. In other words, a summoning protocol for a
configuration violating Condition 2 is easily modified to
make a cloning machine, which is impossible.

To see that Conditions 1 and 2 are su�cient will re-
quire constructing a protocol that will succeed at the
summoning task given a starting point and n call-reveal
pairs satisfying the conditions. The structure of the pro-
tocol will only depend on the directed graph G = (V,E)
whose vertices are labelled by the diamondsDi and which
contains the edge (Di, Dj) if and only if there is a causal
curve from some point in Di to one in Dj .

It is possible to handle the n = 2 case by making use
of a strategy from [7]. Without loss of generality, assume
there is a causal curve from D

0

to D
1

. Begin by dis-
tributing a Bell pair between the spatial locations of the
start point and y

0

. Upon receiving the quantum state
at the start point, immediately teleport it over the Bell
pair [5], sending the classical teleportation data to both
z
0

and z
1

. Meanwhile, if the call is received at y
0

, for-
ward the other half of the Bell pair to z

0

, but if no call is
received, forward it to z

1

. Because there is a causal curve
from the start point to both z

0

and z
1

, and because there
is a causal curve from D

0

and D
1

(which, in particular,
guarantees there is a causal curve from y

0

to z
1

), both
the classical data and the half of the Bell pair required
to reconstruct the quantum state will arrive at the ap-
propriate reveal point. Figure 4 depicts an example in
which this protocol succeeds but the simpler strategy of
carrying the qubit through the causal diamonds fails.

Using quantum error correction, a protocol for gen-
eral n can be built recursively from the protocol for
n = 2. Encode the state |'i at the starting point s
in an ((n � 1, n)) threshold secret sharing scheme [11].
There are n subsets of {D

1

, D
2

, . . . , Dn} of size n � 1.
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FIG. 4: The general strategy for completing two-request tasks
can be used to complete this example, even though y

0

and y
1

are outside the light cone of s. The essence of teleportation
is that it splits a qubit into entanglement and classical data
transmission, thereby making it possible to delocalize quan-
tum information in a curious way: classical data can be trans-
mitted to several recipients without regard to the no-cloning
theorem while entanglement reaches outside the light cone.
Both features are crucial in this example.
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FIG. 5: a) This configuration of four call-reveal spacetime
points satisfies the conditions of Theorem 1 and requires a
combination of error correction and teleportation for success-
ful summoning. Each reveal point is again lightlike to its
call point and zj is causal to the call point yj�1mod 4

. In
addition, z

0

is lightlike to y
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and z
3

is lightlike to y
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. b)
The graph G of causal relationships used to construct the
summoning protocol. The subproblem involving the cycle
D

0

! D
2

! D
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! D
0

is structurally equivalent to the ex-
ample illustrated in Figure 3, although the recursive protocol
replaces direct quantum communication by teleportation. c)
The code used in the e�cient construction has one physical
qubit for each edge of this graph, G0. The arcs label the four
sets of doubled edges su�cient to reconstruct the state. In the
protocol, if there is a request at y

0

, for example, the qubits
on the solid edges are sent to z

0

.

Assign one of the n shares to each of the subsets and for
each subset recursively execute the protocol, now on the
smaller subset of size n � 1. If the request is made at
call point yj , then for each of the subsets containing Dj ,
the corresponding protocol will forward its share of the
secret to zj . Precisely n� 1 of the n subsets contain Dj ,
so the state |'i will be recoverable at zj , as required. An
example for n = 4 is sketched in Figures 5a and 5b.
E�cient construction— The protocol described in

Analysis	  of	  the	  code	  

X	  
Z	  

Z	   CWS	  code	  property:	  	  
All	  errors	  converted	  to	  Z	  errors	  

Z	  

For	  Pauli	  error	  P:	  
Err(P)	  =	  induced	  Z	  error	  	  

Condition 1: Err(P ) 6=
Q

e Ze

X	  
Z	  

Z	  

Condition 2: If Err(P ) = I then [

Q
e Ze, P ] = 0.

�	  Every	  possible	  X	  error	  induces	  exactly	  one	  Z	  error	  on	  a	  green	  edge	  

�	  To	  achieve	  Err(P)	  =	  I,	  need	  an	  even	  number	  of	  X	  errors.	  

�	  XZ=-‐ZX	  implies	  that	  if	  P	  contains	  an	  even	  number	  of	  X	  errors,	  then	  [ΠeZe,P]=0	  

Protected	  



Conclusions	  

•  Quantum	  information	  can	  be	  replicated	  in	  a	  surprising	  variety	  of	  ways	  in	  
spacetime	  

•  Only	  constraints:	  no	  obvious	  violations	  of	  no-‐cloning	  or	  causality	  
•  Straightforward	  extension	  to	  arbitrary	  spatial	  regions	  
•  Similar	  ideas	  can	  also	  be	  used	  to	  exclude	  information	  from	  specified	  regions	  

–  Previously	  studied	  at	  fixed	  time	  as	  “quantum	  secret	  sharing”	  
–  Extends	  theory	  to	  dynamically	  changing	  coalitions	  and	  moving	  participants	  

•  Future	  directions:	  
–  Convince	  someone	  to	  build	  

–  Incorporate	  further	  physical	  constraints	  
–  Systematic	  theory	  of	  information	  processing	  in	  relativistic	  spacetime!	  
–  Extract	  lessons	  for	  situations	  in	  which	  spacetime	  structure	  is	  an	  approximation:	  

•  Cloning	  paradoxes	  in	  black	  hole	  evaporation,	  complementarity,	  firewalls,	  etc.	  
•  How	  do	  conclusions	  change	  when	  area	  scaling	  of	  qubits	  is	  required?	  
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FIG. 2: A summoning task in 1+1 dimensions. In this exam-
ple, a simple strategy will work even though z

1

is not in the
future light cone of z

0

. The quantum state is first transported
along the arrow to P . The call information originating at y

0

is
broadcast into its future light cone and accessed at the point
P . If the call is for z

0

, the quantum state is moved there. If
not, it is moved to z

1

.

be a↵ected by a request at yj and a↵ect the outcome
at zj . A qubit can be summoned to zj from yj if and
only if the qubit is localized in the causal diamond Dj .
Therefore, the summoning task is possible if and only if
the qubit is localized to each and every one of the causal
diamonds {D

1

, D
2

, . . . , Dn�1

}.
To understand the definition and the surprising variety

phenomena it allows, it will be helpful to consider some
important examples. The simplest one consists of just
two call points coinciding precisely with their associated
reveal points, and in the forward light cone of a qubit [22]
in the state |'i at the starting point. If the two call points
are not spacelike to each other, then the qubit can sim-
ply be transmitted to each call point in turn. On the
other hand, Kent observed that if the two call points are
spacelike to each other, the impossibility of superluminal
signalling implies that being able to successfully summon
|'i would amount to being able to send |'i to both the
reveal points, which is a clear violation of the no-cloning
principle. Despite its simplicity, this no-summoning theo-
rem has significant consequences for information process-
ing. In the same way that the no-cloning theorem gives
rise to secret key distribution protocols secured by the
laws of quantum mechanics, the no-summoning theorem
gives rise to secure bit commitment protocols secured by
a combination of quantum mechanics and relativity [8].
Secure bit commitment is impossible using quantum me-
chanics alone [9, 10].

Another simple example in 1+1 dimensions is shown in
Figure 2. Even though there is no causal curve through
each of the reveal points, it is still possible to complete
the summoning task. The example illustrates that if
there is a causal curve passing through each of the causal
diamonds, then summoning will be possible.
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FIG. 3: Exploiting quantum error correction. One share of a
((2, 3)) threshold quantum secret sharing scheme is allocated
to each of the call points yj . Meanwhile, each reveal point zj
is lightlike to both yj and yj+1mod 3

. (The vertical direction
is time. The arrows are causal, in this case lightlike, curves.)
If the participants follow the protocol described in the text,
then the correct reveal point will receive enough shares to
reconstruct the secret.

When more spatial dimensions are introduced, delocal-
ization becomes crucial in understanding which configu-
rations of causal diamonds are compatible. For an repre-
sentative example, place three call points at time zero on
the vertices of an equilateral triangle with edge lengths `.
Place the reveal points at time `/(2c) on the midpoints
of the edges, for c the speed of light. Because the call-
reveal pairs are lightlike, the diamonds Di are just line
segments, as shown in Figure 3. There is no causal curve
through the diamonds Di, so the strategy of simply mov-
ing the qubit around won’t work. Delocalizing the qubit
through the use of quantum error correcting codes will,
however. It is possible to encode the quantum state |'i
into a tripartite Hilbert space H

1

⌦H
2

⌦H
3

such that the
qubit can be recovered even if any one of the correspond-
ing three quantum subsystems is lost. This is known as a
((2, 3)) threshold quantum secret sharing scheme because
the quantum information can be recovered from any two
of the three subsystems even though no information at
all can be recovered from fewer than two [11]. This en-
coding is performed at the start point s and then one
share is forwarded to each of the call points. For each j,
if the request is made at yj , then that share is forwarded
to zj . Otherwise, that share is forwarded to zj�1mod 3

.
By this arrangement the correct reveal point will receive
two out the three shares as required to recover the state.
The example reveals one interesting way to delocalize

a quantum state. To address the full variety of ways in
which quantum information can be distributed in space-
time, the following theorem characterizes every summon-
ing task in Minkowski space as possible or impossible.

Theorem 1 Summoning is possible if and only if the fol-

lowing conditions hold:

1. Every reveal point is in the future light cone of the


