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FIG. 2: A summoning task in 1+1 dimensions. In this exam-
ple, a simple strategy will work even though z

1

is not in the
future light cone of z

0

. The quantum state is first transported
along the arrow to P . The call information originating at y

0

is
broadcast into its future light cone and accessed at the point
P . If the call is for z

0

, the quantum state is moved there. If
not, it is moved to z

1

.

be a↵ected by a request at yj and a↵ect the outcome
at zj . A qubit can be summoned to zj from yj if and
only if the qubit is localized in the causal diamond Dj .
Therefore, the summoning task is possible if and only if
the qubit is localized to each and every one of the causal
diamonds {D

1

, D
2

, . . . , Dn�1

}.
To understand the definition and the surprising variety

phenomena it allows, it will be helpful to consider some
important examples. The simplest one consists of just
two call points coinciding precisely with their associated
reveal points, and in the forward light cone of a qubit [22]
in the state |'i at the starting point. If the two call points
are not spacelike to each other, then the qubit can sim-
ply be transmitted to each call point in turn. On the
other hand, Kent observed that if the two call points are
spacelike to each other, the impossibility of superluminal
signalling implies that being able to successfully summon
|'i would amount to being able to send |'i to both the
reveal points, which is a clear violation of the no-cloning
principle. Despite its simplicity, this no-summoning theo-
rem has significant consequences for information process-
ing. In the same way that the no-cloning theorem gives
rise to secret key distribution protocols secured by the
laws of quantum mechanics, the no-summoning theorem
gives rise to secure bit commitment protocols secured by
a combination of quantum mechanics and relativity [8].
Secure bit commitment is impossible using quantum me-
chanics alone [9, 10].

Another simple example in 1+1 dimensions is shown in
Figure 2. Even though there is no causal curve through
each of the reveal points, it is still possible to complete
the summoning task. The example illustrates that if
there is a causal curve passing through each of the causal
diamonds, then summoning will be possible.
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FIG. 3: Exploiting quantum error correction. One share of a
((2, 3)) threshold quantum secret sharing scheme is allocated
to each of the call points yj . Meanwhile, each reveal point zj
is lightlike to both yj and yj+1mod 3

. (The vertical direction
is time. The arrows are causal, in this case lightlike, curves.)
If the participants follow the protocol described in the text,
then the correct reveal point will receive enough shares to
reconstruct the secret.

When more spatial dimensions are introduced, delocal-
ization becomes crucial in understanding which configu-
rations of causal diamonds are compatible. For an repre-
sentative example, place three call points at time zero on
the vertices of an equilateral triangle with edge lengths `.
Place the reveal points at time `/(2c) on the midpoints
of the edges, for c the speed of light. Because the call-
reveal pairs are lightlike, the diamonds Di are just line
segments, as shown in Figure 3. There is no causal curve
through the diamonds Di, so the strategy of simply mov-
ing the qubit around won’t work. Delocalizing the qubit
through the use of quantum error correcting codes will,
however. It is possible to encode the quantum state |'i
into a tripartite Hilbert space H

1

⌦H
2

⌦H
3

such that the
qubit can be recovered even if any one of the correspond-
ing three quantum subsystems is lost. This is known as a
((2, 3)) threshold quantum secret sharing scheme because
the quantum information can be recovered from any two
of the three subsystems even though no information at
all can be recovered from fewer than two [11]. This en-
coding is performed at the start point s and then one
share is forwarded to each of the call points. For each j,
if the request is made at yj , then that share is forwarded
to zj . Otherwise, that share is forwarded to zj�1mod 3

.
By this arrangement the correct reveal point will receive
two out the three shares as required to recover the state.
The example reveals one interesting way to delocalize

a quantum state. To address the full variety of ways in
which quantum information can be distributed in space-
time, the following theorem characterizes every summon-
ing task in Minkowski space as possible or impossible.

Theorem 1 Summoning is possible if and only if the fol-

lowing conditions hold:

1. Every reveal point is in the future light cone of the

3

starting point s.

2. For each pair (i, j), the diamonds Di and Dj are

causally related, meaning that there exists a causal

curve from Di to Dj or vice versa.

The two conditions are necessary because they encode
the most basic constraints coming from relativity and
quantum mechanics, namely causality and the impossi-
bility of cloning. Indeed, Condition 1 is manifestly the
prohibition of superluminal communication. Condition
2 arises from reasoning similar to Kent’s treatment of
“non-ideal” summoning [6]. Suppose we have a success-
ful summoning protocol for which Condition 2 is violated,
meaning that two diamonds Di and Dj are spacelike sep-
arated as in Figure 1. If the call is received at yi, there is
a procedure that will reveal the state at zi. Now imagine
that the call machinery malfunctions such that it makes
a call at yj in addition to the one at yi. Because yj is not
in the causal past of zi, the malfunction cannot prevent
the state from being revealed at zi. Likewise, because yi
is not in the causal past of zj , the call at yj will result in
the state successfully being revealed at zj . This proce-
dure therefore reveals the state |'i at the two spacelike
points zi and zj starting from a single copy of |'i at
the point s. In other words, a summoning protocol for a
configuration violating Condition 2 is easily modified to
make a cloning machine, which is impossible.

To see that Conditions 1 and 2 are su�cient will re-
quire constructing a protocol that will succeed at the
summoning task given a starting point and n call-reveal
pairs satisfying the conditions. The structure of the pro-
tocol will only depend on the directed graph G = (V,E)
whose vertices are labelled by the diamondsDi and which
contains the edge (Di, Dj) if and only if there is a causal
curve from some point in Di to one in Dj .

It is possible to handle the n = 2 case by making use
of a strategy from [7]. Without loss of generality, assume
there is a causal curve from D

0

to D
1

. Begin by dis-
tributing a Bell pair between the spatial locations of the
start point and y

0

. Upon receiving the quantum state
at the start point, immediately teleport it over the Bell
pair [5], sending the classical teleportation data to both
z
0

and z
1

. Meanwhile, if the call is received at y
0

, for-
ward the other half of the Bell pair to z

0

, but if no call is
received, forward it to z

1

. Because there is a causal curve
from the start point to both z

0

and z
1

, and because there
is a causal curve from D

0

and D
1

(which, in particular,
guarantees there is a causal curve from y

0

to z
1

), both
the classical data and the half of the Bell pair required
to reconstruct the quantum state will arrive at the ap-
propriate reveal point. Figure 4 depicts an example in
which this protocol succeeds but the simpler strategy of
carrying the qubit through the causal diamonds fails.

Using quantum error correction, a protocol for gen-
eral n can be built recursively from the protocol for
n = 2. Encode the state |'i at the starting point s
in an ((n � 1, n)) threshold secret sharing scheme [11].
There are n subsets of {D

1

, D
2

, . . . , Dn} of size n � 1.
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FIG. 4: The general strategy for completing two-request tasks
can be used to complete this example, even though y

0

and y
1

are outside the light cone of s. The essence of teleportation
is that it splits a qubit into entanglement and classical data
transmission, thereby making it possible to delocalize quan-
tum information in a curious way: classical data can be trans-
mitted to several recipients without regard to the no-cloning
theorem while entanglement reaches outside the light cone.
Both features are crucial in this example.
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FIG. 5: a) This configuration of four call-reveal spacetime
points satisfies the conditions of Theorem 1 and requires a
combination of error correction and teleportation for success-
ful summoning. Each reveal point is again lightlike to its
call point and zj is causal to the call point yj�1mod 4

. In
addition, z

0

is lightlike to y
2

and z
3

is lightlike to y
1

. b)
The graph G of causal relationships used to construct the
summoning protocol. The subproblem involving the cycle
D

0

! D
2

! D
3

! D
0

is structurally equivalent to the ex-
ample illustrated in Figure 3, although the recursive protocol
replaces direct quantum communication by teleportation. c)
The code used in the e�cient construction has one physical
qubit for each edge of this graph, G0. The arcs label the four
sets of doubled edges su�cient to reconstruct the state. In the
protocol, if there is a request at y

0

, for example, the qubits
on the solid edges are sent to z

0

.

Assign one of the n shares to each of the subsets and for
each subset recursively execute the protocol, now on the
smaller subset of size n � 1. If the request is made at
call point yj , then for each of the subsets containing Dj ,
the corresponding protocol will forward its share of the
secret to zj . Precisely n� 1 of the n subsets contain Dj ,
so the state |'i will be recoverable at zj , as required. An
example for n = 4 is sketched in Figures 5a and 5b.
E�cient construction— The protocol described in
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We’re	
  delighted	
  to	
  celebrate	
  our	
  friend	
  most	
  illustrious,	
  
A	
  scienLst	
  brilliant	
  and	
  uncommon	
  industrious.	
  
From	
  quarks	
  to	
  the	
  cosmos,	
  he	
  doesn't	
  dissemble,	
  
He's	
  a	
  storehouse	
  of	
  knowledge,	
  with	
  effort	
  assembled.	
  
	
  
He	
  pointed	
  out	
  early	
  the	
  need	
  to	
  be	
  leery	
  
Of	
  the	
  prevailing	
  cosmological	
  theory.	
  
Our	
  universe	
  should	
  have	
  been	
  full	
  to	
  afflicLon	
  
With	
  magnets	
  diverging	
  against	
  Gauss's	
  prescripLon.	
  
	
  
An	
  expert	
  on	
  parLcles,	
  fields	
  and	
  forces,	
  
He	
  juggled	
  axions,	
  symmetries,	
  masses	
  (and	
  courses).	
  
But	
  somewhere	
  along	
  the	
  proverbial	
  way,	
  
Quantum	
  computers	
  became	
  his	
  dossier.	
  
	
  
For	
  corrupLon	
  from	
  bit	
  flips	
  all	
  the	
  way	
  to	
  bosonic,	
  
He's	
  invented	
  new	
  gadgets	
  that	
  are	
  just	
  the	
  right	
  tonic.	
  
	
  
For	
  Alice	
  and	
  Bob	
  filtering	
  long-­‐estranged	
  Eve,	
  
He	
  proved	
  that	
  entanglement	
  provided	
  the	
  sieve.	
  
	
  
And	
  in	
  systems	
  exoLc	
  confined	
  to	
  the	
  plane,	
  
He	
  found	
  qubits	
  tangled	
  in	
  quasiparLcle	
  skeins.	
  
	
  
How	
  fortunate	
  we	
  are	
  this	
  spaceLme	
  to	
  share,	
  
And	
  to	
  all	
  wish	
  John	
  Preskill	
  bon	
  anniversaire.	
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derivative, expressible as a surface
term, given by the expression in
parenthesis. That surface term is the
same Chern–Simons term that de-
scribes the topological field theory of
the QH state. In the QH field theory,
the term’s coefficient specifies the
value of the Hall conductance.14 Here
the coefficient of θ = π translates into
a Hall conductance of 1⁄2 e2/h, half the
conductance of the first QH plateau.
That value is uniquely associated
with the single Dirac cone on the sur-
face of topological insulators. Any
random disorder can change a sys-
tem’s Hall conductance only by an
 integer multiple of e2/h, thus the 
half-QH conductance of 1⁄2 e2/h can
never be reduced to zero by disor-
der—the surface states are topologi-
cally robust. 

Outlook
The field of topological insulators is
growing rapidly, and many remark-
able experiments have been carried
out. In nonlocal transport measure-
ments in a series of HgTe devices, the Würzburg group con-
firmed that transport current is carried by the QSH edge
states. The topological insulators Bi2Te3 and Bi2Se3 fabricated
in nanoribbon form at Stanford and by molecular-beam epi-
taxy at Tsinghua University. Scanning tunneling  microscopy
experiments have been carried out at Princeton, Stanford,
and Tsinghua universities to probe the topological surface
states. Preliminary transport measurements indicate domi-
nant contributions from surface states.

Solving Maxwell’s equations with the topological term
included leads to predictions of novel physical properties
characterized by exotic excitations. The 2D QSH insulator is
predicted to have fractional charge at the edge and spin–
charge separation in the bulk. In introductory physics classes
we learned that a point charge above a metal or an insulator
can be viewed as inducing an image charge below the sur-
face. A point charge above the surface of a 3D topological in-
sulator is predicted to induce not only an image electric
charge but also an image magnetic monopole below the sur-
face,12 as shown in figure 5a. Such a composite object of elec-
tric and magnetic charges, called a dyon, would obey neither
Bose nor Fermi statistics but would behave like a so-called
anyon with any possible statistics. Dislocations inside a 3D
topological insulator contain electronic states that behave
similarly to QSH edge states.

Axions are weakly interacting particles postulated to
solve some puzzles in the standard model of particle
physics16 (see the article by Karl van Bibber and Leslie Rosen-
berg, PHYSICS TODAY, August 2006, page 30). Those elusive
particles are also predicted to exist inside topological mag-
netic insulators, systems for which the θ parameter above be-
comes dependent on position and time. Majorana fermions
are distinct from the familiar Dirac fermions: They are their
own antiparticles. There is still no conclusive evidence for
Majorana fermions in nature. But when a superconductor is
close to the surface of a topological insulator, Majorana fermi-
ons are predicted to occur inside vortices (see figure 5b).17

Besides teaching us about the quantum world, the exotic
particles in topological insulators could find novel uses. For
example, image monopoles could be used to write magnetic

memory by purely electric means, and the Majorana fermions
could be used for topological quantum computing.18

Albert Einstein insisted that all fundamental laws of
physics should be expressed in terms of geometry, and he ex-
emplified that ancient Greek ideal by formulating the theory
of gravity in terms of the geometrical curvature of space and
time. Physicists are now pursuing Einstein’s dream one step
further, exploring the fundamental laws expressed in terms
of topological field theory. The standard model of elementary
particles contains a topological term that is identical to the Sθ
term that defines topological insulators. Even if only a small
number of the predicted exotic particles are observed in topo-
logical insulators, our fundamental understanding of nature
would be greatly enhanced. Such tabletop experiments could
become a window into the standard model16 and help reveal
the alluring beauty and mysteries of our universe.
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Figure 5. Novel behavior is predicted for topological insulators. (a) When a topo-
logical insulator (TI, green) is coated by a thin ferromagnetic layer (gray), each
electron (red sphere) in the vicinity of the surface induces an image monopole
(blue sphere) right beneath it.12 When one electron winds around another (red 
circle), it will experience the magnetic flux (arrows in the blue dome) carried by
the image monopole of the other, so that the  electron– monopole composite,
called a dyon, obeys fractional statistics. (b) When a TI is coated by an s-wave
 superconductor (SC), the superconducting vortices are Majorana fermions—they
are their own antiparticles. Exchanging or braiding Majorana vortices, as sketched
here, leads to non-abelian statistics.17 Such behavior could form the basis for topo-
logical quantum computing. 
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3

Minkowski space as possible or impossible.

Theorem 1 Summoning is possible if and only if the following
conditions hold:

1. Every reveal point is in the future light cone of the start-
ing point s.

2. For each pair (i, j), the diamonds Di and Dj are
causally related, meaning that there exists a causal
curve from Di to Dj or vice versa.

In other words, a set of causal diamonds can all contain the
same quantum information if and only if the diamonds are all
causally related to each other. The two conditions are nec-
essary because they encode the most basic constraints com-
ing from relativity and quantum mechanics, namely causality
and the impossibility of cloning. Indeed, Condition 1 is man-
ifestly the prohibition of superluminal communication. Con-
dition 2 arises from reasoning similar to Kent’s treatment of
“non-ideal” summoning [? ]. Suppose there is a successful
summoning protocol for which Condition 2 is violated, mean-
ing that two diamonds Di and Dj are spacelike separated as
in Figure 1. If the call is received at yi, there is a procedure
that will reveal the state at zi. Now imagine that the call ma-
chinery malfunctions such that it makes a call at yj in addition
to the one at yi. Because yj is not in the causal past of zi, the
malfunction cannot prevent the state from being revealed at
zi. Likewise, because yi is not in the causal past of zj , the
call at yj will result in the state successfully being revealed at
zj . This procedure therefore reveals the state |'i at the two
spacelike points zi and zj starting from a single copy of |'i at
the point s. In other words, a summoning protocol for a con-
figuration violating Condition 2 is easily modified to make a
cloning machine, which is impossible.

To see that Conditions 1 and 2 are sufficient will require
constructing a protocol that will succeed at the summoning
task given a starting point and n call-reveal pairs satisfying
the conditions. The structure of the protocol will only depend
on the directed graph G = (V,E) whose vertices are labelled
by the diamonds Di and which contains the edge (Di, Dj) if
and only if there is a causal curve from some point in Di to
one in Dj .

It is possible to handle the n = 2 case by making use of
teleportation [? ]. Without loss of generality, assume there is
a causal curve from D

0

to D
1

. Begin by distributing a Bell
pair between the spatial locations of the start point and y

0

.
Upon receiving the quantum state at the start point, immedi-
ately teleport it over the Bell pair [? ], sending the classical
teleportation data to both z

0

and z
1

. Meanwhile, if the call is
received at y

0

, forward the other half of the Bell pair to z
0

, but
if no call is received, forward it to z

1

. Because there is a causal
curve from the start point to both z

0

and z
1

, and because there
is a causal curve from D

0

and D
1

(which, in particular, guar-
antees there is a causal curve from y

0

to z
1

), both the classical
data and the half of the Bell pair required to reconstruct the
quantum state will arrive at the appropriate reveal point. Fig-
ure ?? depicts an example in which this protocol succeeds but

s

y
0

y
1

z
0

z
1

FIG. 4: Exploiting teleportation. The n = 2 strategy can be used to
complete this example, even though y

0

and y
1

are outside the light
cone of s. The essence of teleportation is that it splits a qubit into
entanglement and classical data transmission, thereby making it pos-
sible to delocalize quantum information in a curious way: classical
data can be transmitted to several recipients without regard to the no-
cloning theorem while entanglement reaches outside the light cone.
Both features are crucial in this example.

the simpler strategy of carrying the qubit through the causal
diamonds fails.

Using quantum error correction, a protocol for general n
can be built recursively from the protocol for n = 2. En-
code the state |'i at the starting point s in an ((n � 1, n))
threshold secret sharing scheme [? ]. There are n subsets of
{D

1

, D
2

, . . . , Dn} of size n � 1. Assign one of the n shares
to each of the subsets and for each subset recursively execute
the protocol, now on the smaller subset of size n�1. If the re-
quest is made at call point yj , then for each of the subsets con-
taining Dj , the corresponding protocol will forward its share
of the secret to zj . Precisely n � 1 of the n subsets contain
Dj , so the state |'i will be recoverable at zj , as required. An
example for n = 4 is sketched in Figures 5a and 5b.

Efficient construction— The protocol described in the
proof of Theorem ?? is unfortunately inefficient, using
roughly n! qubits. Practicality aside, such dramatic growth
quickly runs afoul of the holographic bound, which places a
limit of roughly 1.4 ⇥ 1069 bits per square meter: trying to
store the protocol’s qubits in a region centred at s of area of 1
m2 would already create a black hole for n = 55. (See, e.g.,
[? ].) Understanding summoning in the presence of gravity
therefore requires finding more efficient protocols.

The high cost is incurred from the recursive encoding pre-
ceding teleportation, so we will show how to achieve the same
functionality directly. To begin, it will be helpful to charac-
terize that functionality. The recursive encoding produces a
quantum error correcting code with shares associated to the
edges of the graph G. Should the call arrive at yj , teleporta-
tion is used to ensure that all shares associated to the edges
incident to Dj arrive at the reveal point zj . The functional-
ity required of the code is therefore clear: it must be possible
to recover the encoded quantum state using only those shares
received at zj . That is, the erasure of shares for any combi-
nation of edges leaving at least one vertex untouched must be
recoverable, as illustrated in Figure 5c.

That describes an unusual quantum error correcting code.
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FIG. 2: A summoning task in 1+1 dimensions. In this exam-
ple, a simple strategy will work even though z

1

is not in the
future light cone of z

0

. The quantum state is first transported
along the arrow to P . The call information originating at y

0

is
broadcast into its future light cone and accessed at the point
P . If the call is for z

0

, the quantum state is moved there. If
not, it is moved to z

1

.

be a↵ected by a request at yj and a↵ect the outcome
at zj . A qubit can be summoned to zj from yj if and
only if the qubit is localized in the causal diamond Dj .
Therefore, the summoning task is possible if and only if
the qubit is localized to each and every one of the causal
diamonds {D

1

, D
2

, . . . , Dn�1

}.
To understand the definition and the surprising variety

phenomena it allows, it will be helpful to consider some
important examples. The simplest one consists of just
two call points coinciding precisely with their associated
reveal points, and in the forward light cone of a qubit [22]
in the state |'i at the starting point. If the two call points
are not spacelike to each other, then the qubit can sim-
ply be transmitted to each call point in turn. On the
other hand, Kent observed that if the two call points are
spacelike to each other, the impossibility of superluminal
signalling implies that being able to successfully summon
|'i would amount to being able to send |'i to both the
reveal points, which is a clear violation of the no-cloning
principle. Despite its simplicity, this no-summoning theo-
rem has significant consequences for information process-
ing. In the same way that the no-cloning theorem gives
rise to secret key distribution protocols secured by the
laws of quantum mechanics, the no-summoning theorem
gives rise to secure bit commitment protocols secured by
a combination of quantum mechanics and relativity [8].
Secure bit commitment is impossible using quantum me-
chanics alone [9, 10].

Another simple example in 1+1 dimensions is shown in
Figure 2. Even though there is no causal curve through
each of the reveal points, it is still possible to complete
the summoning task. The example illustrates that if
there is a causal curve passing through each of the causal
diamonds, then summoning will be possible.
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FIG. 3: Exploiting quantum error correction. One share of a
((2, 3)) threshold quantum secret sharing scheme is allocated
to each of the call points yj . Meanwhile, each reveal point zj
is lightlike to both yj and yj+1mod 3

. (The vertical direction
is time. The arrows are causal, in this case lightlike, curves.)
If the participants follow the protocol described in the text,
then the correct reveal point will receive enough shares to
reconstruct the secret.

When more spatial dimensions are introduced, delocal-
ization becomes crucial in understanding which configu-
rations of causal diamonds are compatible. For an repre-
sentative example, place three call points at time zero on
the vertices of an equilateral triangle with edge lengths `.
Place the reveal points at time `/(2c) on the midpoints
of the edges, for c the speed of light. Because the call-
reveal pairs are lightlike, the diamonds Di are just line
segments, as shown in Figure 3. There is no causal curve
through the diamonds Di, so the strategy of simply mov-
ing the qubit around won’t work. Delocalizing the qubit
through the use of quantum error correcting codes will,
however. It is possible to encode the quantum state |'i
into a tripartite Hilbert space H

1

⌦H
2

⌦H
3

such that the
qubit can be recovered even if any one of the correspond-
ing three quantum subsystems is lost. This is known as a
((2, 3)) threshold quantum secret sharing scheme because
the quantum information can be recovered from any two
of the three subsystems even though no information at
all can be recovered from fewer than two [11]. This en-
coding is performed at the start point s and then one
share is forwarded to each of the call points. For each j,
if the request is made at yj , then that share is forwarded
to zj . Otherwise, that share is forwarded to zj�1mod 3

.
By this arrangement the correct reveal point will receive
two out the three shares as required to recover the state.
The example reveals one interesting way to delocalize

a quantum state. To address the full variety of ways in
which quantum information can be distributed in space-
time, the following theorem characterizes every summon-
ing task in Minkowski space as possible or impossible.

Theorem 1 Summoning is possible if and only if the fol-

lowing conditions hold:

1. Every reveal point is in the future light cone of the

|'i
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be a↵ected by a request at yj and a↵ect the outcome
at zj . A qubit can be summoned to zj from yj if and
only if the qubit is localized in the causal diamond Dj .
Therefore, the summoning task is possible if and only if
the qubit is localized to each and every one of the causal
diamonds {D

1

, D
2

, . . . , Dn�1

}.
To understand the definition and the surprising variety

phenomena it allows, it will be helpful to consider some
important examples. The simplest one consists of just
two call points coinciding precisely with their associated
reveal points, and in the forward light cone of a qubit [22]
in the state |'i at the starting point. If the two call points
are not spacelike to each other, then the qubit can sim-
ply be transmitted to each call point in turn. On the
other hand, Kent observed that if the two call points are
spacelike to each other, the impossibility of superluminal
signalling implies that being able to successfully summon
|'i would amount to being able to send |'i to both the
reveal points, which is a clear violation of the no-cloning
principle. Despite its simplicity, this no-summoning theo-
rem has significant consequences for information process-
ing. In the same way that the no-cloning theorem gives
rise to secret key distribution protocols secured by the
laws of quantum mechanics, the no-summoning theorem
gives rise to secure bit commitment protocols secured by
a combination of quantum mechanics and relativity [8].
Secure bit commitment is impossible using quantum me-
chanics alone [9, 10].

Another simple example in 1+1 dimensions is shown in
Figure 2. Even though there is no causal curve through
each of the reveal points, it is still possible to complete
the summoning task. The example illustrates that if
there is a causal curve passing through each of the causal
diamonds, then summoning will be possible.
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FIG. 3: Exploiting quantum error correction. One share of a
((2, 3)) threshold quantum secret sharing scheme is allocated
to each of the call points yj . Meanwhile, each reveal point zj
is lightlike to both yj and yj+1mod 3

. (The vertical direction
is time. The arrows are causal, in this case lightlike, curves.)
If the participants follow the protocol described in the text,
then the correct reveal point will receive enough shares to
reconstruct the secret.

When more spatial dimensions are introduced, delocal-
ization becomes crucial in understanding which configu-
rations of causal diamonds are compatible. For an repre-
sentative example, place three call points at time zero on
the vertices of an equilateral triangle with edge lengths `.
Place the reveal points at time `/(2c) on the midpoints
of the edges, for c the speed of light. Because the call-
reveal pairs are lightlike, the diamonds Di are just line
segments, as shown in Figure 3. There is no causal curve
through the diamonds Di, so the strategy of simply mov-
ing the qubit around won’t work. Delocalizing the qubit
through the use of quantum error correcting codes will,
however. It is possible to encode the quantum state |'i
into a tripartite Hilbert space H
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3

such that the
qubit can be recovered even if any one of the correspond-
ing three quantum subsystems is lost. This is known as a
((2, 3)) threshold quantum secret sharing scheme because
the quantum information can be recovered from any two
of the three subsystems even though no information at
all can be recovered from fewer than two [11]. This en-
coding is performed at the start point s and then one
share is forwarded to each of the call points. For each j,
if the request is made at yj , then that share is forwarded
to zj . Otherwise, that share is forwarded to zj�1mod 3

.
By this arrangement the correct reveal point will receive
two out the three shares as required to recover the state.
The example reveals one interesting way to delocalize

a quantum state. To address the full variety of ways in
which quantum information can be distributed in space-
time, the following theorem characterizes every summon-
ing task in Minkowski space as possible or impossible.

Theorem 1 Summoning is possible if and only if the fol-

lowing conditions hold:

1. Every reveal point is in the future light cone of the
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be a↵ected by a request at yj and a↵ect the outcome
at zj . A qubit can be summoned to zj from yj if and
only if the qubit is localized in the causal diamond Dj .
Therefore, the summoning task is possible if and only if
the qubit is localized to each and every one of the causal
diamonds {D

1

, D
2

, . . . , Dn�1

}.
To understand the definition and the surprising variety

phenomena it allows, it will be helpful to consider some
important examples. The simplest one consists of just
two call points coinciding precisely with their associated
reveal points, and in the forward light cone of a qubit [22]
in the state |'i at the starting point. If the two call points
are not spacelike to each other, then the qubit can sim-
ply be transmitted to each call point in turn. On the
other hand, Kent observed that if the two call points are
spacelike to each other, the impossibility of superluminal
signalling implies that being able to successfully summon
|'i would amount to being able to send |'i to both the
reveal points, which is a clear violation of the no-cloning
principle. Despite its simplicity, this no-summoning theo-
rem has significant consequences for information process-
ing. In the same way that the no-cloning theorem gives
rise to secret key distribution protocols secured by the
laws of quantum mechanics, the no-summoning theorem
gives rise to secure bit commitment protocols secured by
a combination of quantum mechanics and relativity [8].
Secure bit commitment is impossible using quantum me-
chanics alone [9, 10].

Another simple example in 1+1 dimensions is shown in
Figure 2. Even though there is no causal curve through
each of the reveal points, it is still possible to complete
the summoning task. The example illustrates that if
there is a causal curve passing through each of the causal
diamonds, then summoning will be possible.
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to each of the call points yj . Meanwhile, each reveal point zj
is lightlike to both yj and yj+1mod 3

. (The vertical direction
is time. The arrows are causal, in this case lightlike, curves.)
If the participants follow the protocol described in the text,
then the correct reveal point will receive enough shares to
reconstruct the secret.

When more spatial dimensions are introduced, delocal-
ization becomes crucial in understanding which configu-
rations of causal diamonds are compatible. For an repre-
sentative example, place three call points at time zero on
the vertices of an equilateral triangle with edge lengths `.
Place the reveal points at time `/(2c) on the midpoints
of the edges, for c the speed of light. Because the call-
reveal pairs are lightlike, the diamonds Di are just line
segments, as shown in Figure 3. There is no causal curve
through the diamonds Di, so the strategy of simply mov-
ing the qubit around won’t work. Delocalizing the qubit
through the use of quantum error correcting codes will,
however. It is possible to encode the quantum state |'i
into a tripartite Hilbert space H
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such that the
qubit can be recovered even if any one of the correspond-
ing three quantum subsystems is lost. This is known as a
((2, 3)) threshold quantum secret sharing scheme because
the quantum information can be recovered from any two
of the three subsystems even though no information at
all can be recovered from fewer than two [11]. This en-
coding is performed at the start point s and then one
share is forwarded to each of the call points. For each j,
if the request is made at yj , then that share is forwarded
to zj . Otherwise, that share is forwarded to zj�1mod 3

.
By this arrangement the correct reveal point will receive
two out the three shares as required to recover the state.
The example reveals one interesting way to delocalize

a quantum state. To address the full variety of ways in
which quantum information can be distributed in space-
time, the following theorem characterizes every summon-
ing task in Minkowski space as possible or impossible.

Theorem 1 Summoning is possible if and only if the fol-

lowing conditions hold:

1. Every reveal point is in the future light cone of the

φ	
  is	
  encoded	
  into	
  	
  ((2,3))	
  threshold	
  	
  
quantum	
  error	
  correcting	
  code	
  at	
  s	
  

One	
  particle	
  sent	
  to	
  each	
  of	
  yj	
  

Each	
  particle	
  is	
  then	
  sent	
  at	
  the	
  
speed	
  of	
  light	
  along	
  a	
  red	
  ray	
  

2	
  particles	
  pass	
  through	
  each	
  causal	
  	
  
diamond	
  yjzj	
  	
  

The	
  same	
  quantum	
  information	
  is	
  	
  
replicated	
  in	
  each	
  causal	
  diamond	
  

Summoning	
  language:	
  if	
  a	
  request	
  is	
  made	
  at	
  yj	
  then	
  
	
  the	
  share	
  at	
  yj	
  is	
  sent	
  to	
  zj	
  instead	
  of	
  to	
  zj-­‐1	
  

|'i



A	
  more	
  complicated	
  scenario	
  
4

a)

y
3

y
2

y
1

y
0

z
3

z
2z

1

z
0

s

b)

c)

D
0

D
1

D
2

D
3

D
0

D
1

D
2

D
3

FIG. 6: a) This configuration of four call-reveal spacetime
points satisfies the conditions of Theorem 1 and requires a
combination of error correction and teleportation for success-
ful summoning. Each reveal point is again lightlike to its
call point and zj is causal to the call point yj�1mod 4

. In
addition, z

0

is lightlike to y
2

and z
3

is lightlike to y
1

. b)
The graph G of causal relationships used to construct the
summoning protocol. The subproblem involving the cycle
D

0

! D
2

! D
3

! D
0

is structurally equivalent to the ex-
ample illustrated in Figure 3, although the recursive protocol
replaces direct quantum communication by teleportation. c)
The code used in the e�cient construction has one physical
qubit for each edge of this graph, G0. The arcs label the four
sets of doubled edges su�cient to reconstruct the state. In the
protocol, if there is a request at y

0

, for example, the qubits
on the solid edges are sent to z

0

.

the proof of Theorem 1 is unfortunately ine�cient, using
⌦(n!) qubits. Practicality aside, such dramatic growth
quickly runs afoul of the holographic bound, which places
a limit of roughly 1.4 ⇥ 1069 bits per m2 [1]: trying to
store the protocol’s qubits in a region centred at s of
area of 1 m2 would already create a black hole for n =
55. Understanding summoning in the presence of gravity
therefore requires finding more e�cient protocols.

The high cost is incurred from the recursive encoding
preceding teleportation, so we will show how to achieve
the same functionality directly. To begin, it will be help-
ful to characterize that functionality. The recursive en-
coding produces a quantum error correcting code with
shares associated to the edges of the graph G. Should
the call arrive at yj , teleportation is used to ensure that
all shares associated to the edges incident to Dj arrive
at the reveal point zj . The functionality required of the
code is therefore clear: it must be possible to recover the
encoded quantum state using only those shares received
at zj . That is, the erasure of shares for any combination
of edges leaving at least one vertex untouched must be
recoverable, as illustrated in Figure 5c.

That describes an unusual quantum error correcting
code. Ignoring directionality, G is the complete graph,
so each vertex is incident to exactly n�1 edges. The total
number of edges is

�n
2

�
, however, so the quantum state

must be recoverable from a vanishing fraction 2/n of the
total number of shares, albeit a specially chosen vanishing

s

FIG. 7: A summoning task defined by sequences of call-reveal
pairs; the three possible sequences are indicated by dashed
arrows through the reveal points.

fraction that prevents violations of the no-cloning prin-
ciple. A particular codeword-stabilized (CWS) quantum
code [12] will do the job very e�ciently. LetG0 = (V 0, E0)
be an undirected version of G with a new vertex placed
on each edge, so that V 0 = V [E and E0 = {(v, (v, w)) :
(v, w) 2 E or (w, v) 2 E}. The code will consist of a sin-
gle qubit for each of the edges of G0. For each such edge
e, let Ne = {f 2 E0 : f \ e 6= ; and f 6= e} be the set of
edges adjacent to e and define Se = Xe

Q
f2Ne

Zf , where
Xe and Ze are Pauli operators acting on edge e. The
encoded qubit is simply the span of the simultaneous +1
eigenstate of all the Se operators and the simultaneous
�1 eigenstate.
As demonstrated in Appendix B, this code has pre-

cisely the desired properties if the share for each edge
e 2 E of the original graph G is identified with the pair
of edges replacing e in G0. The construction therefore
yields a method for solving the summoning task using
exactly n(n � 1) physical qubits per summoned qubit.
The CWS code also happens to be a stabilizer code, so
the erasure errors can be decoded in polynomial time [4].
Generalizations— The summoning tasks character-

ized by Theorem 1 only require that it be possible to
respond to a request at a single call point. That version
of the problem is the one most relevant to understanding
how information can be distributed through spacetime.
From an active information processing perspective, how-
ever, it is natural to permit requests at sequences of call
points rather than just one. These sequential summon-
ing tasks will be specified by a set {ȳ

0

, ȳ
1

, ..., ȳn�1

} of
possible sequences of call points and a corresponding set
{z̄

0

, z̄
1

, ..., z̄n�1

} of sequences of reveal points. Any se-
quence of requests ȳj must be met by revealing the state
at each of the paired reveal points. A typical problem is
illustrated in Figure 7.
The characterization of which sequential summoning

tasks are possible reduces easily to Theorem 1. It is
clearly necessary that there be a causal curve through
each set of reveal points z̄j . If not, then there would
be a sequence containing two spacelike separated re-
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starting point s.

2. For each pair (i, j), the diamonds Di and Dj are

causally related, meaning that there exists a causal

curve from Di to Dj or vice versa.

The two conditions are necessary because they encode
the most basic constraints coming from relativity and
quantum mechanics, namely causality and the impossi-
bility of cloning. Indeed, Condition 1 is manifestly the
prohibition of superluminal communication. Condition
2 arises from reasoning similar to Kent’s treatment of
“non-ideal” summoning [6]. Suppose we have a success-
ful summoning protocol for which Condition 2 is violated,
meaning that two diamonds Di and Dj are spacelike sep-
arated as in Figure 1. If the call is received at yi, there is
a procedure that will reveal the state at zi. Now imagine
that the call machinery malfunctions such that it makes
a call at yj in addition to the one at yi. Because yj is not
in the causal past of zi, the malfunction cannot prevent
the state from being revealed at zi. Likewise, because yi
is not in the causal past of zj , the call at yj will result in
the state successfully being revealed at zj . This proce-
dure therefore reveals the state |'i at the two spacelike
points zi and zj starting from a single copy of |'i at
the point s. In other words, a summoning protocol for a
configuration violating Condition 2 is easily modified to
make a cloning machine, which is impossible.

To see that Conditions 1 and 2 are su�cient will re-
quire constructing a protocol that will succeed at the
summoning task given a starting point and n call-reveal
pairs satisfying the conditions. The structure of the pro-
tocol will only depend on the directed graph G = (V,E)
whose vertices are labelled by the diamondsDi and which
contains the edge (Di, Dj) if and only if there is a causal
curve from some point in Di to one in Dj .

It is possible to handle the n = 2 case by making use
of a strategy from [7]. Without loss of generality, assume
there is a causal curve from D

0

to D
1

. Begin by dis-
tributing a Bell pair between the spatial locations of the
start point and y

0

. Upon receiving the quantum state
at the start point, immediately teleport it over the Bell
pair [5], sending the classical teleportation data to both
z
0

and z
1

. Meanwhile, if the call is received at y
0

, for-
ward the other half of the Bell pair to z

0

, but if no call is
received, forward it to z

1

. Because there is a causal curve
from the start point to both z

0

and z
1

, and because there
is a causal curve from D

0

and D
1

(which, in particular,
guarantees there is a causal curve from y

0

to z
1

), both
the classical data and the half of the Bell pair required
to reconstruct the quantum state will arrive at the ap-
propriate reveal point. Figure 4 depicts an example in
which this protocol succeeds but the simpler strategy of
carrying the qubit through the causal diamonds fails.

Using quantum error correction, a protocol for gen-
eral n can be built recursively from the protocol for
n = 2. Encode the state |'i at the starting point s
in an ((n � 1, n)) threshold secret sharing scheme [11].
There are n subsets of {D

1

, D
2

, . . . , Dn} of size n � 1.
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FIG. 4: The general strategy for completing two-request tasks
can be used to complete this example, even though y

0

and y
1

are outside the light cone of s. The essence of teleportation
is that it splits a qubit into entanglement and classical data
transmission, thereby making it possible to delocalize quan-
tum information in a curious way: classical data can be trans-
mitted to several recipients without regard to the no-cloning
theorem while entanglement reaches outside the light cone.
Both features are crucial in this example.
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FIG. 5: a) This configuration of four call-reveal spacetime
points satisfies the conditions of Theorem 1 and requires a
combination of error correction and teleportation for success-
ful summoning. Each reveal point is again lightlike to its
call point and zj is causal to the call point yj�1mod 4

. In
addition, z

0

is lightlike to y
2

and z
3

is lightlike to y
1

. b)
The graph G of causal relationships used to construct the
summoning protocol. The subproblem involving the cycle
D

0

! D
2

! D
3

! D
0

is structurally equivalent to the ex-
ample illustrated in Figure 3, although the recursive protocol
replaces direct quantum communication by teleportation. c)
The code used in the e�cient construction has one physical
qubit for each edge of this graph, G0. The arcs label the four
sets of doubled edges su�cient to reconstruct the state. In the
protocol, if there is a request at y

0

, for example, the qubits
on the solid edges are sent to z

0

.

Assign one of the n shares to each of the subsets and for
each subset recursively execute the protocol, now on the
smaller subset of size n � 1. If the request is made at
call point yj , then for each of the subsets containing Dj ,
the corresponding protocol will forward its share of the
secret to zj . Precisely n� 1 of the n subsets contain Dj ,
so the state |'i will be recoverable at zj , as required. An
example for n = 4 is sketched in Figures 5a and 5b.
E�cient construction— The protocol described in
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FIG. 2: A summoning task in 1+1 dimensions. In this exam-
ple, a simple strategy will work even though z

1

is not in the
future light cone of z

0

. The quantum state is first transported
along the arrow to P . The call information originating at y

0

is
broadcast into its future light cone and accessed at the point
P . If the call is for z

0

, the quantum state is moved there. If
not, it is moved to z

1

.

be a↵ected by a request at yj and a↵ect the outcome
at zj . A qubit can be summoned to zj from yj if and
only if the qubit is localized in the causal diamond Dj .
Therefore, the summoning task is possible if and only if
the qubit is localized to each and every one of the causal
diamonds {D

1

, D
2

, . . . , Dn�1

}.
To understand the definition and the surprising variety

phenomena it allows, it will be helpful to consider some
important examples. The simplest one consists of just
two call points coinciding precisely with their associated
reveal points, and in the forward light cone of a qubit [22]
in the state |'i at the starting point. If the two call points
are not spacelike to each other, then the qubit can sim-
ply be transmitted to each call point in turn. On the
other hand, Kent observed that if the two call points are
spacelike to each other, the impossibility of superluminal
signalling implies that being able to successfully summon
|'i would amount to being able to send |'i to both the
reveal points, which is a clear violation of the no-cloning
principle. Despite its simplicity, this no-summoning theo-
rem has significant consequences for information process-
ing. In the same way that the no-cloning theorem gives
rise to secret key distribution protocols secured by the
laws of quantum mechanics, the no-summoning theorem
gives rise to secure bit commitment protocols secured by
a combination of quantum mechanics and relativity [8].
Secure bit commitment is impossible using quantum me-
chanics alone [9, 10].

Another simple example in 1+1 dimensions is shown in
Figure 2. Even though there is no causal curve through
each of the reveal points, it is still possible to complete
the summoning task. The example illustrates that if
there is a causal curve passing through each of the causal
diamonds, then summoning will be possible.
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FIG. 3: Exploiting quantum error correction. One share of a
((2, 3)) threshold quantum secret sharing scheme is allocated
to each of the call points yj . Meanwhile, each reveal point zj
is lightlike to both yj and yj+1mod 3

. (The vertical direction
is time. The arrows are causal, in this case lightlike, curves.)
If the participants follow the protocol described in the text,
then the correct reveal point will receive enough shares to
reconstruct the secret.

When more spatial dimensions are introduced, delocal-
ization becomes crucial in understanding which configu-
rations of causal diamonds are compatible. For an repre-
sentative example, place three call points at time zero on
the vertices of an equilateral triangle with edge lengths `.
Place the reveal points at time `/(2c) on the midpoints
of the edges, for c the speed of light. Because the call-
reveal pairs are lightlike, the diamonds Di are just line
segments, as shown in Figure 3. There is no causal curve
through the diamonds Di, so the strategy of simply mov-
ing the qubit around won’t work. Delocalizing the qubit
through the use of quantum error correcting codes will,
however. It is possible to encode the quantum state |'i
into a tripartite Hilbert space H

1

⌦H
2

⌦H
3

such that the
qubit can be recovered even if any one of the correspond-
ing three quantum subsystems is lost. This is known as a
((2, 3)) threshold quantum secret sharing scheme because
the quantum information can be recovered from any two
of the three subsystems even though no information at
all can be recovered from fewer than two [11]. This en-
coding is performed at the start point s and then one
share is forwarded to each of the call points. For each j,
if the request is made at yj , then that share is forwarded
to zj . Otherwise, that share is forwarded to zj�1mod 3

.
By this arrangement the correct reveal point will receive
two out the three shares as required to recover the state.
The example reveals one interesting way to delocalize

a quantum state. To address the full variety of ways in
which quantum information can be distributed in space-
time, the following theorem characterizes every summon-
ing task in Minkowski space as possible or impossible.

Theorem 1 Summoning is possible if and only if the fol-

lowing conditions hold:

1. Every reveal point is in the future light cone of the
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starting point s.

2. For each pair (i, j), the diamonds Di and Dj are

causally related, meaning that there exists a causal

curve from Di to Dj or vice versa.

The two conditions are necessary because they encode
the most basic constraints coming from relativity and
quantum mechanics, namely causality and the impossi-
bility of cloning. Indeed, Condition 1 is manifestly the
prohibition of superluminal communication. Condition
2 arises from reasoning similar to Kent’s treatment of
“non-ideal” summoning [6]. Suppose we have a success-
ful summoning protocol for which Condition 2 is violated,
meaning that two diamonds Di and Dj are spacelike sep-
arated as in Figure 1. If the call is received at yi, there is
a procedure that will reveal the state at zi. Now imagine
that the call machinery malfunctions such that it makes
a call at yj in addition to the one at yi. Because yj is not
in the causal past of zi, the malfunction cannot prevent
the state from being revealed at zi. Likewise, because yi
is not in the causal past of zj , the call at yj will result in
the state successfully being revealed at zj . This proce-
dure therefore reveals the state |'i at the two spacelike
points zi and zj starting from a single copy of |'i at
the point s. In other words, a summoning protocol for a
configuration violating Condition 2 is easily modified to
make a cloning machine, which is impossible.

To see that Conditions 1 and 2 are su�cient will re-
quire constructing a protocol that will succeed at the
summoning task given a starting point and n call-reveal
pairs satisfying the conditions. The structure of the pro-
tocol will only depend on the directed graph G = (V,E)
whose vertices are labelled by the diamondsDi and which
contains the edge (Di, Dj) if and only if there is a causal
curve from some point in Di to one in Dj .

It is possible to handle the n = 2 case by making use
of a strategy from [7]. Without loss of generality, assume
there is a causal curve from D

0

to D
1

. Begin by dis-
tributing a Bell pair between the spatial locations of the
start point and y

0

. Upon receiving the quantum state
at the start point, immediately teleport it over the Bell
pair [5], sending the classical teleportation data to both
z
0

and z
1

. Meanwhile, if the call is received at y
0

, for-
ward the other half of the Bell pair to z

0

, but if no call is
received, forward it to z

1

. Because there is a causal curve
from the start point to both z

0

and z
1

, and because there
is a causal curve from D

0

and D
1

(which, in particular,
guarantees there is a causal curve from y

0

to z
1

), both
the classical data and the half of the Bell pair required
to reconstruct the quantum state will arrive at the ap-
propriate reveal point. Figure 4 depicts an example in
which this protocol succeeds but the simpler strategy of
carrying the qubit through the causal diamonds fails.

Using quantum error correction, a protocol for gen-
eral n can be built recursively from the protocol for
n = 2. Encode the state |'i at the starting point s
in an ((n � 1, n)) threshold secret sharing scheme [11].
There are n subsets of {D

1

, D
2

, . . . , Dn} of size n � 1.
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FIG. 4: The general strategy for completing two-request tasks
can be used to complete this example, even though y

0

and y
1

are outside the light cone of s. The essence of teleportation
is that it splits a qubit into entanglement and classical data
transmission, thereby making it possible to delocalize quan-
tum information in a curious way: classical data can be trans-
mitted to several recipients without regard to the no-cloning
theorem while entanglement reaches outside the light cone.
Both features are crucial in this example.
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FIG. 5: a) This configuration of four call-reveal spacetime
points satisfies the conditions of Theorem 1 and requires a
combination of error correction and teleportation for success-
ful summoning. Each reveal point is again lightlike to its
call point and zj is causal to the call point yj�1mod 4

. In
addition, z

0

is lightlike to y
2

and z
3

is lightlike to y
1

. b)
The graph G of causal relationships used to construct the
summoning protocol. The subproblem involving the cycle
D

0

! D
2

! D
3

! D
0

is structurally equivalent to the ex-
ample illustrated in Figure 3, although the recursive protocol
replaces direct quantum communication by teleportation. c)
The code used in the e�cient construction has one physical
qubit for each edge of this graph, G0. The arcs label the four
sets of doubled edges su�cient to reconstruct the state. In the
protocol, if there is a request at y

0

, for example, the qubits
on the solid edges are sent to z

0

.

Assign one of the n shares to each of the subsets and for
each subset recursively execute the protocol, now on the
smaller subset of size n � 1. If the request is made at
call point yj , then for each of the subsets containing Dj ,
the corresponding protocol will forward its share of the
secret to zj . Precisely n� 1 of the n subsets contain Dj ,
so the state |'i will be recoverable at zj , as required. An
example for n = 4 is sketched in Figures 5a and 5b.
E�cient construction— The protocol described in
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starting point s.

2. For each pair (i, j), the diamonds Di and Dj are

causally related, meaning that there exists a causal

curve from Di to Dj or vice versa.

The two conditions are necessary because they encode
the most basic constraints coming from relativity and
quantum mechanics, namely causality and the impossi-
bility of cloning. Indeed, Condition 1 is manifestly the
prohibition of superluminal communication. Condition
2 arises from reasoning similar to Kent’s treatment of
“non-ideal” summoning [6]. Suppose we have a success-
ful summoning protocol for which Condition 2 is violated,
meaning that two diamonds Di and Dj are spacelike sep-
arated as in Figure 1. If the call is received at yi, there is
a procedure that will reveal the state at zi. Now imagine
that the call machinery malfunctions such that it makes
a call at yj in addition to the one at yi. Because yj is not
in the causal past of zi, the malfunction cannot prevent
the state from being revealed at zi. Likewise, because yi
is not in the causal past of zj , the call at yj will result in
the state successfully being revealed at zj . This proce-
dure therefore reveals the state |'i at the two spacelike
points zi and zj starting from a single copy of |'i at
the point s. In other words, a summoning protocol for a
configuration violating Condition 2 is easily modified to
make a cloning machine, which is impossible.

To see that Conditions 1 and 2 are su�cient will re-
quire constructing a protocol that will succeed at the
summoning task given a starting point and n call-reveal
pairs satisfying the conditions. The structure of the pro-
tocol will only depend on the directed graph G = (V,E)
whose vertices are labelled by the diamondsDi and which
contains the edge (Di, Dj) if and only if there is a causal
curve from some point in Di to one in Dj .

It is possible to handle the n = 2 case by making use
of a strategy from [7]. Without loss of generality, assume
there is a causal curve from D

0

to D
1

. Begin by dis-
tributing a Bell pair between the spatial locations of the
start point and y

0

. Upon receiving the quantum state
at the start point, immediately teleport it over the Bell
pair [5], sending the classical teleportation data to both
z
0

and z
1

. Meanwhile, if the call is received at y
0

, for-
ward the other half of the Bell pair to z

0

, but if no call is
received, forward it to z

1

. Because there is a causal curve
from the start point to both z

0

and z
1

, and because there
is a causal curve from D

0

and D
1

(which, in particular,
guarantees there is a causal curve from y

0

to z
1

), both
the classical data and the half of the Bell pair required
to reconstruct the quantum state will arrive at the ap-
propriate reveal point. Figure 4 depicts an example in
which this protocol succeeds but the simpler strategy of
carrying the qubit through the causal diamonds fails.

Using quantum error correction, a protocol for gen-
eral n can be built recursively from the protocol for
n = 2. Encode the state |'i at the starting point s
in an ((n � 1, n)) threshold secret sharing scheme [11].
There are n subsets of {D

1

, D
2

, . . . , Dn} of size n � 1.
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FIG. 4: The general strategy for completing two-request tasks
can be used to complete this example, even though y

0

and y
1

are outside the light cone of s. The essence of teleportation
is that it splits a qubit into entanglement and classical data
transmission, thereby making it possible to delocalize quan-
tum information in a curious way: classical data can be trans-
mitted to several recipients without regard to the no-cloning
theorem while entanglement reaches outside the light cone.
Both features are crucial in this example.
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FIG. 5: a) This configuration of four call-reveal spacetime
points satisfies the conditions of Theorem 1 and requires a
combination of error correction and teleportation for success-
ful summoning. Each reveal point is again lightlike to its
call point and zj is causal to the call point yj�1mod 4

. In
addition, z

0

is lightlike to y
2

and z
3

is lightlike to y
1

. b)
The graph G of causal relationships used to construct the
summoning protocol. The subproblem involving the cycle
D

0

! D
2

! D
3

! D
0

is structurally equivalent to the ex-
ample illustrated in Figure 3, although the recursive protocol
replaces direct quantum communication by teleportation. c)
The code used in the e�cient construction has one physical
qubit for each edge of this graph, G0. The arcs label the four
sets of doubled edges su�cient to reconstruct the state. In the
protocol, if there is a request at y

0

, for example, the qubits
on the solid edges are sent to z

0

.

Assign one of the n shares to each of the subsets and for
each subset recursively execute the protocol, now on the
smaller subset of size n � 1. If the request is made at
call point yj , then for each of the subsets containing Dj ,
the corresponding protocol will forward its share of the
secret to zj . Precisely n� 1 of the n subsets contain Dj ,
so the state |'i will be recoverable at zj , as required. An
example for n = 4 is sketched in Figures 5a and 5b.
E�cient construction— The protocol described in
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starting point s.

2. For each pair (i, j), the diamonds Di and Dj are

causally related, meaning that there exists a causal

curve from Di to Dj or vice versa.

The two conditions are necessary because they encode
the most basic constraints coming from relativity and
quantum mechanics, namely causality and the impossi-
bility of cloning. Indeed, Condition 1 is manifestly the
prohibition of superluminal communication. Condition
2 arises from reasoning similar to Kent’s treatment of
“non-ideal” summoning [6]. Suppose we have a success-
ful summoning protocol for which Condition 2 is violated,
meaning that two diamonds Di and Dj are spacelike sep-
arated as in Figure 1. If the call is received at yi, there is
a procedure that will reveal the state at zi. Now imagine
that the call machinery malfunctions such that it makes
a call at yj in addition to the one at yi. Because yj is not
in the causal past of zi, the malfunction cannot prevent
the state from being revealed at zi. Likewise, because yi
is not in the causal past of zj , the call at yj will result in
the state successfully being revealed at zj . This proce-
dure therefore reveals the state |'i at the two spacelike
points zi and zj starting from a single copy of |'i at
the point s. In other words, a summoning protocol for a
configuration violating Condition 2 is easily modified to
make a cloning machine, which is impossible.

To see that Conditions 1 and 2 are su�cient will re-
quire constructing a protocol that will succeed at the
summoning task given a starting point and n call-reveal
pairs satisfying the conditions. The structure of the pro-
tocol will only depend on the directed graph G = (V,E)
whose vertices are labelled by the diamondsDi and which
contains the edge (Di, Dj) if and only if there is a causal
curve from some point in Di to one in Dj .

It is possible to handle the n = 2 case by making use
of a strategy from [7]. Without loss of generality, assume
there is a causal curve from D

0

to D
1

. Begin by dis-
tributing a Bell pair between the spatial locations of the
start point and y

0

. Upon receiving the quantum state
at the start point, immediately teleport it over the Bell
pair [5], sending the classical teleportation data to both
z
0

and z
1

. Meanwhile, if the call is received at y
0

, for-
ward the other half of the Bell pair to z

0

, but if no call is
received, forward it to z

1

. Because there is a causal curve
from the start point to both z

0

and z
1

, and because there
is a causal curve from D

0

and D
1

(which, in particular,
guarantees there is a causal curve from y

0

to z
1

), both
the classical data and the half of the Bell pair required
to reconstruct the quantum state will arrive at the ap-
propriate reveal point. Figure 4 depicts an example in
which this protocol succeeds but the simpler strategy of
carrying the qubit through the causal diamonds fails.

Using quantum error correction, a protocol for gen-
eral n can be built recursively from the protocol for
n = 2. Encode the state |'i at the starting point s
in an ((n � 1, n)) threshold secret sharing scheme [11].
There are n subsets of {D

1

, D
2

, . . . , Dn} of size n � 1.
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FIG. 4: The general strategy for completing two-request tasks
can be used to complete this example, even though y

0

and y
1

are outside the light cone of s. The essence of teleportation
is that it splits a qubit into entanglement and classical data
transmission, thereby making it possible to delocalize quan-
tum information in a curious way: classical data can be trans-
mitted to several recipients without regard to the no-cloning
theorem while entanglement reaches outside the light cone.
Both features are crucial in this example.
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FIG. 5: a) This configuration of four call-reveal spacetime
points satisfies the conditions of Theorem 1 and requires a
combination of error correction and teleportation for success-
ful summoning. Each reveal point is again lightlike to its
call point and zj is causal to the call point yj�1mod 4

. In
addition, z

0

is lightlike to y
2

and z
3
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1

. b)
The graph G of causal relationships used to construct the
summoning protocol. The subproblem involving the cycle
D
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3

! D
0

is structurally equivalent to the ex-
ample illustrated in Figure 3, although the recursive protocol
replaces direct quantum communication by teleportation. c)
The code used in the e�cient construction has one physical
qubit for each edge of this graph, G0. The arcs label the four
sets of doubled edges su�cient to reconstruct the state. In the
protocol, if there is a request at y

0

, for example, the qubits
on the solid edges are sent to z

0

.

Assign one of the n shares to each of the subsets and for
each subset recursively execute the protocol, now on the
smaller subset of size n � 1. If the request is made at
call point yj , then for each of the subsets containing Dj ,
the corresponding protocol will forward its share of the
secret to zj . Precisely n� 1 of the n subsets contain Dj ,
so the state |'i will be recoverable at zj , as required. An
example for n = 4 is sketched in Figures 5a and 5b.
E�cient construction— The protocol described in
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starting point s.

2. For each pair (i, j), the diamonds Di and Dj are

causally related, meaning that there exists a causal

curve from Di to Dj or vice versa.

The two conditions are necessary because they encode
the most basic constraints coming from relativity and
quantum mechanics, namely causality and the impossi-
bility of cloning. Indeed, Condition 1 is manifestly the
prohibition of superluminal communication. Condition
2 arises from reasoning similar to Kent’s treatment of
“non-ideal” summoning [6]. Suppose we have a success-
ful summoning protocol for which Condition 2 is violated,
meaning that two diamonds Di and Dj are spacelike sep-
arated as in Figure 1. If the call is received at yi, there is
a procedure that will reveal the state at zi. Now imagine
that the call machinery malfunctions such that it makes
a call at yj in addition to the one at yi. Because yj is not
in the causal past of zi, the malfunction cannot prevent
the state from being revealed at zi. Likewise, because yi
is not in the causal past of zj , the call at yj will result in
the state successfully being revealed at zj . This proce-
dure therefore reveals the state |'i at the two spacelike
points zi and zj starting from a single copy of |'i at
the point s. In other words, a summoning protocol for a
configuration violating Condition 2 is easily modified to
make a cloning machine, which is impossible.

To see that Conditions 1 and 2 are su�cient will re-
quire constructing a protocol that will succeed at the
summoning task given a starting point and n call-reveal
pairs satisfying the conditions. The structure of the pro-
tocol will only depend on the directed graph G = (V,E)
whose vertices are labelled by the diamondsDi and which
contains the edge (Di, Dj) if and only if there is a causal
curve from some point in Di to one in Dj .

It is possible to handle the n = 2 case by making use
of a strategy from [7]. Without loss of generality, assume
there is a causal curve from D

0

to D
1

. Begin by dis-
tributing a Bell pair between the spatial locations of the
start point and y

0

. Upon receiving the quantum state
at the start point, immediately teleport it over the Bell
pair [5], sending the classical teleportation data to both
z
0

and z
1

. Meanwhile, if the call is received at y
0

, for-
ward the other half of the Bell pair to z

0

, but if no call is
received, forward it to z

1

. Because there is a causal curve
from the start point to both z

0

and z
1

, and because there
is a causal curve from D

0

and D
1

(which, in particular,
guarantees there is a causal curve from y

0

to z
1

), both
the classical data and the half of the Bell pair required
to reconstruct the quantum state will arrive at the ap-
propriate reveal point. Figure 4 depicts an example in
which this protocol succeeds but the simpler strategy of
carrying the qubit through the causal diamonds fails.

Using quantum error correction, a protocol for gen-
eral n can be built recursively from the protocol for
n = 2. Encode the state |'i at the starting point s
in an ((n � 1, n)) threshold secret sharing scheme [11].
There are n subsets of {D

1

, D
2

, . . . , Dn} of size n � 1.
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FIG. 4: The general strategy for completing two-request tasks
can be used to complete this example, even though y

0

and y
1

are outside the light cone of s. The essence of teleportation
is that it splits a qubit into entanglement and classical data
transmission, thereby making it possible to delocalize quan-
tum information in a curious way: classical data can be trans-
mitted to several recipients without regard to the no-cloning
theorem while entanglement reaches outside the light cone.
Both features are crucial in this example.
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FIG. 5: a) This configuration of four call-reveal spacetime
points satisfies the conditions of Theorem 1 and requires a
combination of error correction and teleportation for success-
ful summoning. Each reveal point is again lightlike to its
call point and zj is causal to the call point yj�1mod 4

. In
addition, z

0

is lightlike to y
2

and z
3

is lightlike to y
1

. b)
The graph G of causal relationships used to construct the
summoning protocol. The subproblem involving the cycle
D

0

! D
2

! D
3

! D
0

is structurally equivalent to the ex-
ample illustrated in Figure 3, although the recursive protocol
replaces direct quantum communication by teleportation. c)
The code used in the e�cient construction has one physical
qubit for each edge of this graph, G0. The arcs label the four
sets of doubled edges su�cient to reconstruct the state. In the
protocol, if there is a request at y

0

, for example, the qubits
on the solid edges are sent to z

0

.

Assign one of the n shares to each of the subsets and for
each subset recursively execute the protocol, now on the
smaller subset of size n � 1. If the request is made at
call point yj , then for each of the subsets containing Dj ,
the corresponding protocol will forward its share of the
secret to zj . Precisely n� 1 of the n subsets contain Dj ,
so the state |'i will be recoverable at zj , as required. An
example for n = 4 is sketched in Figures 5a and 5b.
E�cient construction— The protocol described in
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starting point s.

2. For each pair (i, j), the diamonds Di and Dj are

causally related, meaning that there exists a causal

curve from Di to Dj or vice versa.
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the state successfully being revealed at zj . This proce-
dure therefore reveals the state |'i at the two spacelike
points zi and zj starting from a single copy of |'i at
the point s. In other words, a summoning protocol for a
configuration violating Condition 2 is easily modified to
make a cloning machine, which is impossible.

To see that Conditions 1 and 2 are su�cient will re-
quire constructing a protocol that will succeed at the
summoning task given a starting point and n call-reveal
pairs satisfying the conditions. The structure of the pro-
tocol will only depend on the directed graph G = (V,E)
whose vertices are labelled by the diamondsDi and which
contains the edge (Di, Dj) if and only if there is a causal
curve from some point in Di to one in Dj .

It is possible to handle the n = 2 case by making use
of a strategy from [7]. Without loss of generality, assume
there is a causal curve from D
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. Begin by dis-
tributing a Bell pair between the spatial locations of the
start point and y
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. Upon receiving the quantum state
at the start point, immediately teleport it over the Bell
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and z
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. Meanwhile, if the call is received at y
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, for-
ward the other half of the Bell pair to z
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and z
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, and because there
is a causal curve from D
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(which, in particular,
guarantees there is a causal curve from y
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to z
1

), both
the classical data and the half of the Bell pair required
to reconstruct the quantum state will arrive at the ap-
propriate reveal point. Figure 4 depicts an example in
which this protocol succeeds but the simpler strategy of
carrying the qubit through the causal diamonds fails.

Using quantum error correction, a protocol for gen-
eral n can be built recursively from the protocol for
n = 2. Encode the state |'i at the starting point s
in an ((n � 1, n)) threshold secret sharing scheme [11].
There are n subsets of {D
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are outside the light cone of s. The essence of teleportation
is that it splits a qubit into entanglement and classical data
transmission, thereby making it possible to delocalize quan-
tum information in a curious way: classical data can be trans-
mitted to several recipients without regard to the no-cloning
theorem while entanglement reaches outside the light cone.
Both features are crucial in this example.
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is structurally equivalent to the ex-
ample illustrated in Figure 3, although the recursive protocol
replaces direct quantum communication by teleportation. c)
The code used in the e�cient construction has one physical
qubit for each edge of this graph, G0. The arcs label the four
sets of doubled edges su�cient to reconstruct the state. In the
protocol, if there is a request at y

0

, for example, the qubits
on the solid edges are sent to z

0

.

Assign one of the n shares to each of the subsets and for
each subset recursively execute the protocol, now on the
smaller subset of size n � 1. If the request is made at
call point yj , then for each of the subsets containing Dj ,
the corresponding protocol will forward its share of the
secret to zj . Precisely n� 1 of the n subsets contain Dj ,
so the state |'i will be recoverable at zj , as required. An
example for n = 4 is sketched in Figures 5a and 5b.
E�cient construction— The protocol described in
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Conclusions	
  

•  Quantum	
  information	
  can	
  be	
  replicated	
  in	
  a	
  surprising	
  variety	
  of	
  ways	
  in	
  
spacetime	
  

•  Only	
  constraints:	
  no	
  obvious	
  violations	
  of	
  no-­‐cloning	
  or	
  causality	
  
•  Straightforward	
  extension	
  to	
  arbitrary	
  spatial	
  regions	
  
•  Similar	
  ideas	
  can	
  also	
  be	
  used	
  to	
  exclude	
  information	
  from	
  specified	
  regions	
  

–  Previously	
  studied	
  at	
  fixed	
  time	
  as	
  “quantum	
  secret	
  sharing”	
  
–  Extends	
  theory	
  to	
  dynamically	
  changing	
  coalitions	
  and	
  moving	
  participants	
  

•  Future	
  directions:	
  
–  Convince	
  someone	
  to	
  build	
  

–  Incorporate	
  further	
  physical	
  constraints	
  
–  Systematic	
  theory	
  of	
  information	
  processing	
  in	
  relativistic	
  spacetime!	
  
–  Extract	
  lessons	
  for	
  situations	
  in	
  which	
  spacetime	
  structure	
  is	
  an	
  approximation:	
  

•  Cloning	
  paradoxes	
  in	
  black	
  hole	
  evaporation,	
  complementarity,	
  firewalls,	
  etc.	
  
•  How	
  do	
  conclusions	
  change	
  when	
  area	
  scaling	
  of	
  qubits	
  is	
  required?	
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FIG. 2: A summoning task in 1+1 dimensions. In this exam-
ple, a simple strategy will work even though z

1

is not in the
future light cone of z

0

. The quantum state is first transported
along the arrow to P . The call information originating at y

0

is
broadcast into its future light cone and accessed at the point
P . If the call is for z

0

, the quantum state is moved there. If
not, it is moved to z

1

.

be a↵ected by a request at yj and a↵ect the outcome
at zj . A qubit can be summoned to zj from yj if and
only if the qubit is localized in the causal diamond Dj .
Therefore, the summoning task is possible if and only if
the qubit is localized to each and every one of the causal
diamonds {D

1

, D
2

, . . . , Dn�1

}.
To understand the definition and the surprising variety

phenomena it allows, it will be helpful to consider some
important examples. The simplest one consists of just
two call points coinciding precisely with their associated
reveal points, and in the forward light cone of a qubit [22]
in the state |'i at the starting point. If the two call points
are not spacelike to each other, then the qubit can sim-
ply be transmitted to each call point in turn. On the
other hand, Kent observed that if the two call points are
spacelike to each other, the impossibility of superluminal
signalling implies that being able to successfully summon
|'i would amount to being able to send |'i to both the
reveal points, which is a clear violation of the no-cloning
principle. Despite its simplicity, this no-summoning theo-
rem has significant consequences for information process-
ing. In the same way that the no-cloning theorem gives
rise to secret key distribution protocols secured by the
laws of quantum mechanics, the no-summoning theorem
gives rise to secure bit commitment protocols secured by
a combination of quantum mechanics and relativity [8].
Secure bit commitment is impossible using quantum me-
chanics alone [9, 10].

Another simple example in 1+1 dimensions is shown in
Figure 2. Even though there is no causal curve through
each of the reveal points, it is still possible to complete
the summoning task. The example illustrates that if
there is a causal curve passing through each of the causal
diamonds, then summoning will be possible.
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FIG. 3: Exploiting quantum error correction. One share of a
((2, 3)) threshold quantum secret sharing scheme is allocated
to each of the call points yj . Meanwhile, each reveal point zj
is lightlike to both yj and yj+1mod 3

. (The vertical direction
is time. The arrows are causal, in this case lightlike, curves.)
If the participants follow the protocol described in the text,
then the correct reveal point will receive enough shares to
reconstruct the secret.

When more spatial dimensions are introduced, delocal-
ization becomes crucial in understanding which configu-
rations of causal diamonds are compatible. For an repre-
sentative example, place three call points at time zero on
the vertices of an equilateral triangle with edge lengths `.
Place the reveal points at time `/(2c) on the midpoints
of the edges, for c the speed of light. Because the call-
reveal pairs are lightlike, the diamonds Di are just line
segments, as shown in Figure 3. There is no causal curve
through the diamonds Di, so the strategy of simply mov-
ing the qubit around won’t work. Delocalizing the qubit
through the use of quantum error correcting codes will,
however. It is possible to encode the quantum state |'i
into a tripartite Hilbert space H

1

⌦H
2

⌦H
3

such that the
qubit can be recovered even if any one of the correspond-
ing three quantum subsystems is lost. This is known as a
((2, 3)) threshold quantum secret sharing scheme because
the quantum information can be recovered from any two
of the three subsystems even though no information at
all can be recovered from fewer than two [11]. This en-
coding is performed at the start point s and then one
share is forwarded to each of the call points. For each j,
if the request is made at yj , then that share is forwarded
to zj . Otherwise, that share is forwarded to zj�1mod 3

.
By this arrangement the correct reveal point will receive
two out the three shares as required to recover the state.
The example reveals one interesting way to delocalize

a quantum state. To address the full variety of ways in
which quantum information can be distributed in space-
time, the following theorem characterizes every summon-
ing task in Minkowski space as possible or impossible.

Theorem 1 Summoning is possible if and only if the fol-

lowing conditions hold:

1. Every reveal point is in the future light cone of the


