Where and when can a qubit be?

Patrick Hayden McGill University

Based on arXiv:1210.0913 with Alex May

We're delighted to celebrate our friend most illustrious, A scientist brilliant and uncommon industrious. From quarks to the cosmos, he doesn't dissemble, He's a storehouse of knowledge, with effort assembled.

He pointed out early the need to be leery Of the prevailing cosmological theory. Our universe should have been full to affliction With magnets diverging against Gauss's prescription.

An expert on particles, fields and forces, He juggled axions, symmetries, masses (and courses). But somewhere along the proverbial way, Quantum computers became his dossier.

For corruption from bit flips all the way to bosonic, He's invented new gadgets that are just the right tonic.

For Alice and Bob filtering long-estranged Eve, He proved that entanglement provided the sieve.

And in systems exotic confined to the plane, He found qubits tangled in quasiparticle skeins.

How fortunate we are this spacetime to share, And to all wish John Preskill *bon anniversaire*.

Quantum information bedrock

Quantum information **must** be widely replicated in spacetime.

This talk will precisely characterize which forms of replication are possible.

Goal: understand how quantum information can be distributed in space and time

Quantum information cannot be cloned. $|\varphi\rangle \not\mapsto |\varphi\rangle |\varphi\rangle$

Quantum information cannot be replicated in space.

The inadequacy of trajectories

Teleportation

Topological order

Topologically encoded quantum information is delocalized

In principle robust to local noise

Information replicated in multiple overlapping spatial regions

Cloning, Black Holes and Firewalls

[Page, Preskill, Susskind 93][Susskind, Thorlacius, Uglum 93]

Outline

- Summoning information in spacetime
 - Where and when is my quantum information?
- Simple examples
- The general case
 - Complete characterization of which spacetime regions can contain the same quantum information
- Conclusions
 - Application to cryptography

Summoning

Unknown quantum information is originally localized at s.

A request for the info will be made at either y_0 or y_1 , at which point the state must be exhibited at z_0 or z_1 , resp.

This is **prohibited** by the combination of no-cloning and relativistic causality if the line segments y_0z_0 and y_1z_1 are outside each others' lightcones.

Summoning

Unknown quantum information is originally localized at s.

A request for the info will be made at either y_0 or y_1 , at which point the state must be exhibited at z_0 or z_1 , resp.

This is possible if...?

Summoning is possible iff z_1 is in the future of y_0 or z_0 is in the future of y_1 .

Teleportation: A nontrivial example

Request arrives at y_0 or y_1

Direct transmission of ϕ from s to the correct z_0 or z_1 is impossible

Instead, a Bell pair is shared between s and y_o

Teleportation measurement performed at s, with outcome forwarded to both z_0 and z_1

Half of Bell pair at y_o sent to either z_o or z_1 depending on request

Classical data: unconstrained by no-cloning Entanglement: unconstrained by causality

Summoning as replication

Summoning is possible iff z_1 is in the future of y_0 or z_0 is in the future of y_1 .

Summoning is possible iff the causal diamonds D_0 and D_1 are causally related: there exists a causal curve from D_0 to D_1 or vice-versa.

Causal diamond geometry

Inside a causal diamond, quantum mechanical time evolution is unitary

If ϕ is present on one spacelike slice, it is present on all of them

Causal diamond geometry

Diamond becomes a line segment when top and bottom are lightlike separated:

Exploiting quantum error correction

φ is encoded into ((2,3)) threshold quantum error correcting code at s

One particle sent to each of y_i

Each particle is then sent at the speed of light along a red ray

2 particles pass through each causal diamond y_iz_i

The same quantum information is replicated in each causal diamond

Summoning language: if a request is made at y_j then the share at y_j is sent to z_j instead of to z_{j-1}

A more complicated scenario

Yes! Each and every diamond can contain the same quantum information iff every pair is causally related

Equivalently: iff there is no obvious violation of causality or no-cloning

Information replication: general case

Each and every causal diamond can contain the same quantum information if and only if every pair is causally related.

Proof: For n=2, the teleportation procedure works for any pair of diamonds

Associate one "particle" to each such subset and for each subset execute the protocol recursively with one diamond removed.

Efficient procedure

Encode ϕ into a quantum error correcting code with one share for each edge.

Code property: φ can be recovered provided all the shares associated to any D_i

Execute the n=2 teleportation protocol for each edge.

If request made at y_i , then z_i receives all shares associated to D_i and can recover φ .

Unusual QEC: ~n² qubits but recovery using n-1. Vanishing fraction O(1/n).

The quantum error correcting code

Designed using the codeword-stabilized (CWS) quantum code formalism [CSSZ'08]

Each share consists of the 2 qubits associated with each original edge of G.

Analysis of the code

- Every possible X error induces exactly one Z error on a green edge
- To achieve Err(P) = I, need an even number of X errors.
- XZ=-ZX implies that if P contains an even number of X errors, then $[\Pi_e Z_e, P]=0$

Conclusions

- Quantum information can be replicated in a surprising variety of ways in spacetime
- Only constraints: no obvious violations of no-cloning or causality
- Straightforward extension to arbitrary spatial regions
- Similar ideas can also be used to **exclude** information from specified regions
 - Previously studied at fixed time as "quantum secret sharing"
 - Extends theory to dynamically changing coalitions and moving participants
- Future directions:
 - Convince someone to build

- Incorporate further physical constraints
- Systematic theory of information processing in relativistic spacetime!
- Extract lessons for situations in which spacetime structure is an approximation:
 - Cloning paradoxes in black hole evaporation, complementarity, firewalls, etc.
 - How do conclusions change when area scaling of qubits is required?